设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| 简介:
新疆维吾尔自治区2014年普通高考第一次适应性检测 数学(文)试题 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集I=,M=,N=,那么CI (M∪N)= A.( B.4 C. D. 2若实数,满足不等式组,则的最大值是 A.13 B. 12 C.11 D.10 3.在复数范围内,为虚数单位,若实数,满足 则x-的值是 A.1 B. 0 C. -2 D. -3 4.若,则 A. B. C. D. 5.已知椭圆 与双曲线有相同的焦点,则椭圆的离心率为 A. B. C. D. 6. 设一次函数=(x∈R)为奇函数,且 A. B. 1 C. 3 D. 5 7.设等差数列的前n项和为Sn,若则当Sn取最小值时,n等于 A. 9 B. 6 C. 3 D. 1 8. 已知函数的图像恒过一个定点P,且过点P在直线上,则的值是 A. 1 B. 2 C. 8 D. 4 9. 半径为1的球的内接正三棱柱(底面是正三角形的直棱柱) 的侧面积为3,则正三棱柱的高为 A. 2 B. C. 2 D. 10.下列命题是假命题的是 A.((,(∈R,使tan((+()=tan(+tan(成立 B. (有成立 C. (ABC中,“A<B”是“sinA<sinB”成立的充要条件 D. (x∈R,使+=成立 11.执行如图所示的程序框图,则输出的n为 A. 3 B. 6 C. 5 D. 4 12.已知函数在区间[ ,]上恒有>0,则实数的取值范围是 A. (, ) B. ( ,1) C.(0, ) D.( ,1) 二、填空题:本大题共4小题,每小题5分. 13.如图是一个几何体的三视图,则这个几何体的体积是 . 14.直线的倾斜角(满足3sin(=4cos(,且它在轴上的截距为2,则直线的方程是 . 15.在区间[-9,9]上随机取一实数,函数的定义域为D,则∈D的概率为 . 16.若定义域为R的奇函数满足,则下列结论: ①的图像过点(1,0); ②的图像关于直线x=1对称; ③是周期函数,且2是它的一个周期; ④在区间(-1,1)上是单调函数; 其中正确结论的序号是 (填上你认为所有正确结论的序号) 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知(x∈R,0≤(≤()是偶函数 . (I)求(和的最小正周期; (II)在(ABC中,角A、B、C所对的边长分别为,=5,b=3,,求c. 18.(本小题满分12分) 如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=BB1=1,D是A1C的中点. (Ⅰ)求BD的长; (Ⅱ)求证:平面ABB1⊥平面BDC. 19.(本小题满分12分) 某校共有400名高一学生,期中考试之后,为了解学生学习情况,用分层抽样方法从中抽出c名学生的数学期中成绩,按成绩分组,制成如下的频率分布表:(低于20分0人) 组号 第一组 第二组 第三组 第四组 第五组 第六组 第七组 第八组 合计 分组 [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100) 频数 2 2 4 6 15 14 3 c 频率 0.04 0.04 0.08 b 0.3 0.08 0.28 0.06 1 (Ⅰ)求的值,并估计该校本次考试的数学平均分; (Ⅱ)教导处为了解数学成绩在60分以下的学生在学习数学时存在的问题,现决定从第四组中,利用分层抽样抽取7人,再从这7人中随机抽取两人谈话,求这两人都来自同一组的概率. 20.(本小题满分12分) 已知点P(2,0)及椭圆C: . (Ⅰ)过点P的直线与椭圆交于M、N两点,且|MN|=,求以线段MN为直径的圆Q的方程; (Ⅱ)设直线与椭圆C交于A,B两点,是否存在实数k,使得过点P的直线垂直平分弦AB?若存在,求出实数k的值;若不存在,请说明理由. 21.(本小题满分12分) 已知函数 (Ⅰ)当=1时,求在点处的切线方程; (Ⅱ)证若函数在区间[,3]上为单调函数,求的取值范围. 请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲 如图,圆O的半径OC垂直于直径AB,弦CD交半径OA于E,过D的切线与BA的延长线于M. (Ⅰ)已知∠BMD=40°,求∠MED:; (Ⅱ)设圆O的半径为1,MD=,求MA及CD的长. 23.(本小题满分10分)选修4——4:坐标系与参数方程 在直角坐标系中,直线的参数方程为; 以O为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为(=2. (1)求曲线的直角坐标方程,说明它表示什么曲线,并写出其参数方程; (2)过直线上的点向曲线(=1作切线,求切线长的最小值. 24.(本小题满分10分)选修4一5:不等式选讲 已知函数 (1)当=1时,求的解集; (2)若恒成立,求的取值范围. | ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||