http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高二数学试卷 -> 下载
试卷资源详情
资源名称 江西省南昌二中2013-2014学年高二下学期第三次月考数学文试题
文件大小 256KB
所属分类 高二数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2014-7-18 7:18:38
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
简介:



一、选择题(在每小题给出的四个选项中,只有一个正确.每小题5分,共50分)

1.若复数满足(为虚数单位),则z为 ( )

A. B. C. D.

2.已知集合,则集合= ( )

A. B. C. D.

3.设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的 (   )

A.充分而不必要条件 B.必要而不充分条件

C.充分必要条件 D.既不充分也不必要条件

4.函数的图象一定过点 ( )

A.   B.   C.   D.

5.已知为第四象限角,且,则

A. B. C. D.

6.设角的值等于 ( )

A. B.- C.- D.

7.已知函数且,则下列不等式中成立的是 ( )

A. B.

C. D.

8.函数是上的可导函数,时,,则函数的零点个数为 ( )

A. B. C. D.

9.定义在R上的函数满足,当时,;当时,.则等于 ( )

A.335 B.337 C.1678 D.2012

二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上)

11.已知,,则 。

12.函数在恒为正,则实数的范围是 。

13.

14.函数的值域为 。

15.关于函数,有下列命题

①由,可得必是的整数倍;

②的表达式可改写成;

③的图象关于点对称;

④的图象关于直线对称。其中正确命题的序号为 。

三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)

16.(本题满分12分)

已知函数.

(1)若,求函数的单调区间;

(2)设函数在区间上是增函数,求的取值范围.

17.(本小题满分12分)



18.(本题满分12分)

设函数图象的一条对称轴是直线.

(1)求;

(2)求f(x)的最小正周期、单调增区间及对称中心。

19.(本题满分12分)

在△ABC中,角A、B、C的对边分别是。已知

(1)求角C的大小;

(2)若,求△ABC外接圆半径。



21.(本小题满分14分)

已知函数, 。

(1) 求在点处的切线方程;

(2) 证明: 曲线与曲线有唯一公共点;

(3) 设,比较与的大小, 并说明理由.

南昌二中2013-2014学年度下学期第三次月考

高二数学(文)参考答案

一.选择题:DBABC DCDBC

二.填空题:

11.; 12.; 13.; 14.; 15.②③

三.解答题



18.解:(1)由条件知:

∵,∴

(2)f(x)的最小正周期为,由

得递增区间为;对称中心为

19.解(1)∵即

由,∴,即

∵,得即,所以

(2)由得得

∴∴。

20.解:(1)

∵,∴,∴

∴的值域为

(2)由(1)知,可得,∵,∴

又∵,∴

有余弦定理知,即,∴。

21.解:(1) ,则,

点处的切线方程为:,

(2) 令 ,,则,,且,,

因此,当时,,单调递减;当时,,单调递增.

所以,所以在上单调递增,又,即函数有唯一零点,

所以曲线与曲线有唯一公共点.



::立即下载::
进入下载页面
下载出错
相关资源:
·昆明市2015届高二下学期期末八校联考数学(理)试题
·昆明市2015届高二下学期期末八校联考数学(文)试题
·山东省济宁市金乡一中2013-2014学年高二5月质量检测数学理试题
·山东省济宁市金乡一中2013-2014学年高二5月质量检测数学文试题
·山东省济宁市汶上一中2013-2014学年高二5月质量检测数学理试题
·山东省济宁市汶上一中2013-2014学年高二5月质量检测数学文试题
·山东省济宁市嘉祥一中2013-2014学年高二5月质量检测数学理试题
·山东省济宁市嘉祥一中2013-2014学年高二5月质量检测数学文试题
·山东省济宁二中2013-2014学年高二下学期期中检测数学理试题
·山东省济宁二中2013-2014学年高二下学期期中检测数学文试题  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号