因此综合(1)和(2)可知,满足题目条件的a的取值范围为 ……12分
20
∵
∴函数在R上的最小值为,
∴不等式的解集为R,即,
若正确,且不正确,则;
若正确,且不正确,则;
所以的取值范围为. (13分)
21
当-1≤x≤1时,有0≤≤1,-1≤≤0,
∵|f(x)|≤1,(-1≤x≤1),∴|f |≤1,|f()|≤1;
因此当-1≤x≤1时,|g(x)|≤|f |+|f()|≤2.
(3)解:因为a>0,g(x)在[-1,1]上是增函数,当x=1时取得最大值2,即
g(1)=a+b=f(1)-f(0)=2. ①
∵-1≤f(0)=f(1)-2≤1-2=-1,∴c=f(0)=-1.
因为当-1≤x≤1时,f(x)≥-1,即f(x)≥f(0),
根据二次函数的性质,直线x=0为f(x)的图象的对称轴,
由此得-<0 ,即b=0.
由①得a=2,所以f(x)=2x2-1. (14分)