http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高二数学试卷 -> 下载
试卷资源详情
资源名称 福建省安溪八中2013-2014学年高二上学期期中考试数学试题
文件大小 150KB
所属分类 高二数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2014-2-25 8:28:31
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
简介:

2013年秋季安溪八中高二年第一学段质量检测

数学(文)试题 命题人:林进标 131107

选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的

1.数列的一个通项公式可能是( )

A. B. C. D.

2.已知数列满足,且,则( )

A.7 B.6 C.4 D.3

3.不等式的解集为( )

A. B. C. D.

4.已知中,,,则边b=( )

A. B. C. D.

5.第一届现代奥运会召开1896年,每隔四年再次召开,如下表所示,则n的值为

年份

1896年

1900年

1904年

…

2012年



届数

1

2

3

…

n





A.27 B.28 C.29 D.30

6. 已知数列,为其前n项和,则取最大值时,n值为(  )

A.7或6 B.5或6 C. 5 D.6

7.若不等式的解集为,则a-b值是( )

A.-4 B.6 C.10 D.14

8. 在等比数列()中,若,,则该数列的前10项和为(  )

A. B. C.  D.

9.二次不等式的解集是全体实数的条件是



10. 在一座20m高的观测台顶测得对面一水塔仰角为,塔底俯角为,那么这座塔的高为( )

A.m B.m C.m D.m

11. 等差数列中,,,若,则数列的前5项和等于( )

A. 30 B. 45 C. 90 D. 186

12.在数列中,如果存在常数,使得对于任意正整数均成立,那么就称数列为周期数列,其中叫做数列的周期. 已知数列满足,若,当数列的周期为时,则数列的前2012项的和为 ( )

A.1339 B.1340 C.1341 D.1342

二、填空:本大题共4小题,每小题4分,共16分

13.已知是等差数列, 且,则 _________;

14.若在△ABC中,角A,B,C所对的边分别为若_________.

15.设,则三者的从小到大的关系为__________;

16.等差数列中,是它的前项之和,且,则

①此数列的公差②一定小于 ③是各项中最大的项 ④一定是中的最大值 ,其中正确的是________(填入序号).

三、解答题:本大题共6小题,共74分。解答应写出文字说明、证明过程或演算步骤。

17.(本题满分12分)

(1)在8和1000之间插入两个数,使四个数成等比数列,求这两个数。

(2)在8和35之间插入两个数,使这四个数成等差数列,求这两个数。

18.(本小题满分12分)已知a、b、c是的面积,若a = 4, b = 5, , 求:C边的长度。

19.(本题满分12分)

已知不等式的解集为,不等式的解集为.

(1) 求;

(2)若不等式的解集为,求的值.

20.(本小题满分12分)已知等差数列{an}的前n项和为,且

(1)求{an}的通项公式;

(2)设bn=.求证:{bn}是等比数列,并求其前n项和Tn.

21.已知等差数列的前项和为,且,等比数列中,.

(1)求的通项公式;(2)求数列的前项和

22.已知数列的相邻两项是关于的方程的两根,且.

(1)求证: 数列是等比数列;(2)设是数列的前项和,求;

(3)问是否存在常数,使得对任意都成立,若存在,求出的取值范围; 若不存在,请说明理由.

2013年秋季安溪八中高二年第一学段质量检测

数学(文)试题答案

一.选择题:

DABBDB BCBBAD

二.填空题:

13.24 14.  15. 16. ①②④

三.解答题:

17.解:(1)…….3分

………..5分

答:这两个数分别是35 , 200.,……………6分

(2)  。……..9分

……………11分

答:这两个数分别为17 , 26。………12分

18.解: a=4,b=5,

………………………………..……..2分

……………………………………………….…..6分

又

…………………………………………..10分

当…………………………………….12分

19.解:由得,所以.………… 2分 由得或,所以.………… 4分 .?…………6分 (Ⅱ)由(Ⅰ)知?…………7分 则不等式的解集为,即的根为-1,2,…………9分 ,…………11分 即.………… 12分

20.解:(1)∵,,解得

(2)∵,∴{bn}是以为首项,为公比的等比数列,前n项和

21.解:

,





22. (1)证明:是方程两根,



故数列是等比数列,首项公比为-1的等比数列

(2)由(1)得,即

 

= =

(3)

要使对任意都成立,

即 (*)对任意都成立

①当n为正奇数时,由(*)得

即



对任意正奇数都成立.

当且仅当时,有最小值1,

②当n为正偶数时,由(*)得

即

 对任意正偶数都成立.

当且仅当时,有最小值,

综上所述,存在常数,使得使得对任意都成立,

的取值范围是

::立即下载::
进入下载页面
下载出错
相关资源:
·甘肃省临夏中学2013-2014学年高二上学期期中考试数学理试题
·甘肃省临夏中学2013-2014学年高二上学期期中考试数学文试题
·湖北省稳派教育2013-2014学年高二上学期期中考试数学理试题
·湖北省稳派教育2013-2014学年高二上学期期中考试数学文试题
·海南省海南中学2013-2014学年高二上学期期中考试数学理试题
·海南省海南中学2013-2014学年高二上学期期中考试数学文试题
·浙江省绍兴市第一中学2013-2014学年高二上学期期末考试数学理试题
·浙江省绍兴市第一中学2013-2014学年高二上学期期末考试数学文试题
·浙江省杭州二中2013-2014学年高二上学期期末考试数学理试题
·浙江省杭州二中2013-2014学年高二上学期期末考试数学文试题  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号