设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| 简介:
2016年普通高等学校招生全国统一考试(浙江卷) 数学理 一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的. 1. 已知集合 则 A.[2,3] B.( -2,3 ] C.[1,2) D. 【答案】B 【解析】根据补集的运算得.故选B. 2. 已知互相垂直的平面交于直线l.若直线m,n满足 则 A.m∥l B.m∥n C.n⊥l D.m⊥n 【答案】C 3. 在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域 中的点在直线x+y2=0上的投影构成的线段记为AB,则│AB│= A.2 B.4 C.3 D. 【答案】C 【解析】如图为线性区域,区域内的点在直线上的投影构成了线段,即,而,由得,由得,.故选C. 4. 命题“,使得”的定义形式是 A.,使得 B.,使得 C.,使得 D.,使得 【答案】D 【解析】的否定是,的否定是,的否定是.故选D. 5. 设函数,则的最小正周期 A.与b有关,且与c有关 B.与b有关,但与c无关 C.与b无关,且与c无关 D.与b无关,但与c有关 【答案】B 6. 如图,点列{An},{Bn}分别在某锐角的两边上,且, ,(). 若 A.是等差数列 B.是等差数列 C.是等差数列 D.是等差数列 【答案】A 【解析】表示点到对面直线的距离(设为)乘以长度一半,即,由题目中条件可知的长度为定值,那么我们需要知道的关系式,过作垂直得到初始距离,那么和两个垂足构成了等腰梯形,那么,其中为两条线的夹角,即为定值,那么,,作差后:,都为定值,所以为定值.故选A.学优高考网 7. 已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则 A.m>n且e1e2>1 B.m>n且e1e2<1 C.m 【答案】A 【解析】由题意知,即,,代入,得.故选A. 8. 已知实数a,b,c A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100 B.若|a2+b+c|+|a2+b–c|≤1,则a2+b2+c2<100 C.若|a+b+c2|+|a+b–c2|≤1,则a2+b2+c2<100 D.若|a2+b+c|+|a+b2–c|≤1,则a2+b2+c2<100 【答案】D 二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9. 若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是_______. 【答案】 【解析】 10. 已知2cos2x+sin 2x=Asin(ωx+φ)+b(A>0),则A=______,b=________. 【答案】 【解析】,所以 11. 某几何体的三视图如图所示(单位:cm),则该几何体的表面积是 cm2,体积是 cm3. 【答案】 【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为 12. 已知a>b>1.若logab+logba=,ab=ba,则a= ,b= . 【答案】 【解析】设,因为, 因此 13.设数列{an}的前n项和为Sn.若S2=4,an+1=2Sn+1,n∈N*,则a1= ,S5= . 【答案】 14. 如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是 . 【答案】 【解析】中,因为, 所以. 由余弦定理可得 , 所以. 设,则,. 在中,由余弦定理可得 . 故. 在中,,. 由余弦定理可得, 所以. 过作直线的垂线,垂足为.设 则, 即, 解得. 而的面积. 设与平面所成角为,则点到平面的距离. 故四面体的体积 . 设,因为,所以. 则. (2)当时,有, 故. 此时, . 由(1)可知,函数在单调递减,故. 综上,四面体的体积的最大值为. 15. 已知向量a、b, |a| =1,|b| =2,若对任意单位向量e,均有 |a·e|+|b·e| ,则a·b的最大值是 . 【答案】 【解析】,即最大值为 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16. (本题满分14分)在△ABC中,内角A,B,C所对的边分别为a,b,c. 已知b+c=2a cos B. (I)证明:A=2B; (II)若△ABC的面积,求角A的大小. 【试题分析】(I)由正弦定理及两角和的正弦公式可得,再判断的取值范围,进而可证;(II)先由三角形的面积公式及二倍角公式可得,再利用三角形的内角和可得角的大小. (II)由得,故有 , 因,得. 又,,所以. 当时,; 当时,. 综上,或. 17. (本题满分15分)如图,在三棱台中,平面平面 ,,BE=EF=FC=1,BC=2,AC=3. (I)求证:EF⊥平面ACFD; (II)求二面角B-AD-F的平面角的余弦值. 【试题分析】(I)先证,再证,进而可证平面;(II)方法一:先找二面角的平面角,再在中计算,即可得二面角的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面和平面的法向量,进而可得二面角的平面角的余弦值.学优高考网 (II)方法一: 过点作,连结. 因为平面,所以,则平面,所以. 所以,是二面角的平面角. 在中,,,得. 在中,,,得. 所以,二面角的平面角的余弦值为. 18. (本小题15分)已知,函数F(x)=min{2|x?1|,x2?2ax+4a?2}, 其中min{p,q}= (I)求使得等式F(x)=x2?2ax+4a?2成立的x的取值范围; (II)(i)求F(x)的最小值m(a); (ii)求F(x)在区间[0,6]上的最大值M(a). 【试题分析】(I)分别对和两种情况讨论,进而可得使得等式成立的的取值范围;(II)(i)先求函数,的最小值,再根据的定义可得的最小值;(ii)分别对和两种情况讨论的最大值,进而可得在区间上的最大值. (II)(i)设函数,,则 ,, 所以,由的定义知,即 . (ii)当时, , 当时, . 所以, . 19. (本题满分15分)如图,设椭圆(a>1). (I)求直线y=kx+1被椭圆截得的线段长(用a、k表示); (II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 【试题解析】(I)设直线被椭圆截得的线段为,由得 , 故 ,. 因此 . (II)假设圆与椭圆的公共点有个,由对称性可设轴左侧的椭圆上有两个不同的点,,满足 . 记直线,的斜率分别为,,且,,. 20.(本题满分15分)设数列满足,. (I)证明:,; (II)若,,证明:,. 【试题分析】(I)先利用三角形不等式得,变形为,再用累加法可得,进而可证;(II)由(I)可得,进而可得,再利用 | ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||