设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| 简介:
2016年普通高等学校招生全国统一考试 数学(理)(北京卷) 本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回. 第一部分(选择题共40分) 一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. (1)已知集合A=B=,则 (A) (B) (C) (D) (2)若x,y满足 ,则2x+y的最大值为 (A)0 (B)3 (C)4 (D)5 (3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为 (A)1 (B)2 (C)3 (D)4 (4)设a,b是向量,则“IaI=IbI”是“Ia+bI=Ia-bI”的 (A) 充分而不必要条件 (B)必要而不充分条件 (C) 充分必要条件 (D)既不充分也不必要条件 (5)已知x,yR,且xyo,则 (A)- (B) (C) (-0 (D)lnx+lny (6)某三棱锥的三视图如图所示,则该三棱锥的体积为 (A) (B) (C) (D)1 (7)将函数图像上的点P( ,t )向左平移s(s﹥0) 个单位长度得到点P′.若 P′位于函数的图像上,则 (A)t= ,s的最小值为 (B)t= ,s的最小值为 (C)t= ,s的最小值为 (D)t= ,s的最小值为 (8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则 (A)乙盒中黑球不多于丙盒中黑球 (B)乙盒中红球与丙盒中黑球一样多 (C)乙盒中红球不多于丙盒中红球 (D)乙盒中黑球与丙盒中红球一样多 第二部分(非选择题 共110分) 二、填空题共6小题,每小题5分,共30分. (9)设aR,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=_______________。 (10)在的展开式中,的系数为__________________.(用数字作答) (11)在极坐标系中,直线与圆交于A,B两点, 则 =____________________. (12)已知为等差数列,为其前n项和,若 ,,则. (13)双曲线的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点。若正方形OABC的边长为2,则a=_______________. (14)设函数 ①若a=0,则f(x)的最大值为____________________; ②若f(x)无最大值,则实数a的取值范围是_________________。 三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程) (15)(本小题13分) 在ABC中, (I)求 的大小 (II)求 的最大值 (16)(本小题13分)A、B、C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时); A班 6 6.5 7 7.5 8 B班 6 7 8 9 10 11 12 C班 3 4.5 6 7.5 9 10.5 12 13.5 (I) 试估计C班的学生人数; (II) 从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (III)再从A、B、C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记 ,表格中数据的平均数记为 ,试判断 和的大小,(结论不要求证明) (17)(本小题14分) 如图,在四棱锥P-ABCD中,平面PAD 平面ABCD,PAPD ,PA=PD,ABAD,AB=1,AD=2,AC=CD= , (I)求证:PD平面PAB; (II)求直线PB与平面PCD所成角的正弦值; (II I)在棱PA上是否存在点M,使得BMll平面PCD?若存在,求 的值;若不存在,说明理由。 (18)(本小题13分) 设函数f(x)=xe +bx,曲线y=f(x)d hko (2,f(2))处的切线方程为y=(e-1)x+4, (I)求a,b的值; (I I) 求f(x)的单调区间。 (19)(本小题14分) 已知椭圆C: (a>b>0)的离心率为 ,A(a,0),B(0,b),O(0,0),△OAB的面积为1. (I)求椭圆C的方程; (I I)设P的椭圆C上一点,直线PA与Y轴交于点M,直线PB与x轴交于点N。 求证:lANl lBMl为定值。 (20)(本小题13分) 设数列A: , ,… (N≥2)。如果对小于n(2≤n≤N)的每个正整数k都有 < ,则称n是数列A的一个“G时刻”。记“G(A)是数列A 的所有“G时刻”组成的集合。 (I)对数列A:-2,2,-1,1,3,写出G(A)的所有元素; (I I)证明:若数列A中存在使得>,则G(A) ; (I I I)证明:若数列A满足- ≤1(n=2,3, …,N),则G(A)的元素个数不小于 -。 2016年北京高考数学(理科)答案与解析 C 【解析】集合,集合,所以. C 【解析】可行域如图阴影部分,目标函数平移到虚线处取得最大值,对应的点为,最大值为. 3. B 【解析】开始,;第一次循环,;第二次循环,,第三次循环,条件判断为“是”跳出,此时. 4. D 【解析】若成立,则以,为边组成平行四边形,那么该平行四边形为菱形,,表示的是该菱形的对角线,而菱形的对角线不一定相等,所以不一定成立,从而不是充分条件;反之,成立,则以,为边组成平行四边形,则该平行四边形为矩形,矩形的邻边不一定相等,所以不一定成立,从而不是必要条件. 5. C 【解析】 .考查的是反比例函数在单调递减,所以即所以错; .考查的是三角函数在单调性,不是单调的,所以不一定有,错;.考查的是指数函数在单调递减,所以有即所以对;考查的是对数函数的性质,,当时,不一定有,所以错. 6.A 【解析】通过三视图可还原几何体为如图所示三棱锥,则通过侧视图得高,底面积,所以体积. 7.A 【解析】点在函数上,所以,然后 向左平移个单位,即,所以,所以的最小值为. 8.B 【解析】取两个球往盒子中放有种情况: ①红+红,则乙盒中红球数加个; ②黑+黑,则丙盒中黑球数加个; ③红+黑(红球放入甲盒中),则乙盒中黑球数加个; ④黑+红(黑球放入甲盒中),则丙盒中红球数加个. 因为红球和黑球个数一样,所以①和②的情况一样多,③和④的情况完全随机. ③和④对B选项中的乙盒中的红球与丙盒中的黑球数没有任何影响. ①和②出现的次数是一样的,所以对B选项中的乙盒中的红球与丙盒中的黑球数的影响次数一样. 综上,选B. 9. 【解析】 ∵其对应点在实轴上 ∴, 10. 【解析】由二项式定理得含的项为 11. 【解析】将极坐标转化为直角坐标进行运算, 直线的直角坐标方程为 ∵,∴ 圆的直角坐标方程为 圆心在直线上,因此为圆的直径, 12. 【解析】∵∴ ∵,∴ ∴ 13. 2 【解析】不妨令为双曲线的右焦点,在第一象限,则双曲线图象如图 ∵为正方形,∴, ∵直线是渐近线,方程为,∴ 又∵∴ 14.,. 【解析】由,得,如下图,是的两个函数在没有限制条件 时的图象. ⑴ ; ⑵ 当时,有最大值; 当时,在时无最大值,且. 所以,. 15. 【解析】⑴ ∵ ∴ ∴ ∴ ⑵∵ ∴ ∴ ∵ ∴ ∴ ∴最大值为1 上式最大值为1 16. 【解析】⑴,C班学生40人 ⑵在A班中取到每个人的概率相同均为 设班中取到第个人事件为 C班中取到第个人事件为 班中取到的概率为 所求事件为 则 ⑶ 三组平均数分别为总均值 但中多加的三个数据平均值为,比小, 故拉低了平均值 17. 【解析】⑴∵面面 面面 ∵,面 ∴面 ∵面 ∴ 又 ∴面 ⑵取中点为,连结, ∵ ∴ ∵ ∴ 以为原点,如图建系 易知,,,, 则,,, 设为面的法向量,令 ,则与面夹角有 | ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||