http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高二数学试卷 -> 下载
试卷资源详情
资源名称 山东省济宁市微山一中2013-2014学年高二下学期第一次月考数学理试题
文件大小 427KB
所属分类 高二数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2014-4-25 10:39:38
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
简介:

高二年级第二学期第一次阶段检测

数 学 试 题(理) (2014.3)

命题人:罗红孝

注意事项:

1.本试题分第I卷和第Ⅱ卷两部分,第I卷为选择题,共50分;第Ⅱ卷为非选择题,共100分,满分l50分.考试时间为120分钟.

2.答第I卷前,考生务必将姓名、准考证号、考试科目填写清楚,并用2B铅笔涂写在答题卡上,将第I卷选择题的答案涂在答题卡上.

3.答第Ⅱ卷时须将答题纸密封线内的项目填写清楚,第Ⅱ卷的答案用中性笔直接答在答题纸指定的位置上.考试结束后,只收答题卡和第Ⅱ卷答题纸.

第I卷(选择题共50分)

一、选择题:本大题共l0小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.在曲线上切线的倾斜角为的点是(  )

A.(0,0) B.(2,4) C. D.

2. 若直线的方向向量为,平面的法向量为,则能使的是(  )

A. B. 

C. D. 

3. 设,则此函数在区间(0,1)内为(  )

A.单调递增 B. 有增有减 C.单调递减 D.不确定

4. 已知三点不共线,点为平面外的一点,则下列条件中,

能得到平面的充分条件是( )

A. ; B. ;

C. ; D. 

5. 等于

A.1 B. C. D.

6. 正方体-棱长为1,E是中点,则E到平面的距离是

A. B. C. D.

7. 设是函数的导函数,的图象如图所示,

则的图象最有可能的是( )

 

8. 如图,是直三棱柱,,点、分别是、的中点,

若,则与所成角的余弦值是( )

A. B.

C. D.

9. 函数,已知在时取得极值,则等于(  )

A.2 B.3 C.4 D.5

10. 在平面直角坐标系中, ,沿x轴把平面直角坐标系折成120(的二面角后,

则线段AB的长度为( )

A. B. C. D.

第Ⅱ卷(非选择题共100分)

二、填空题:本大题共5小题,每小题5分,共25分.

11.设.若曲线与直线,所围成封闭图形的面积为,则=__ ____.

12.如图,在正方体中,、分别是、的 中点,

则异面直线与所成角的大小是____________.

13.函数在区间上的最大值是 .

14.设函数,若关于的方程有三个不同实根,

则的取值范围是______________ .

15.给出下列命题

①已知,则;

②为空间四点,若不构成空间的一个基底,则共面;

③已知,则与任何向量不构成空间的一个基底;

④已知是空间的一个基底,则基向量可以与向量构成空间另一个基底.

其中所有正确命题的序号为______________.

三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.

16.(本小题满分12分)

设函数 的图象与直线相切于.

(Ⅰ)求, 的值;

(Ⅱ)讨论函数的单调性.

17.(本小题满分12分)

已知三棱锥中,平面,AB⊥AC,,

N为AB上一点,,分别为PB,BC的中点.

(Ⅰ)证明:;

(Ⅱ)求与平面所成角的大小.

18(本小题满分12分)

设的导数满足,其中常数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ) 设,求函数的极值.

19.(本小题满分12分)

如图,已知正三棱柱的侧棱长和底面边长均为1,

是底面边上的中点,是侧棱上的点,且

(Ⅰ)求二面角的平面角的余弦值;

(Ⅱ)求点到平面的距离。

20(本小题满分13分)

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式=,其中3<<6,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。

(I) 求的值

(Ⅱ)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大。

21.(本小题满分14分)

如图所示,在底面是菱形的四棱锥中,

 ,,点在上,且.

(Ⅰ)证明:平面;

(Ⅱ)求二面角的大小;

(Ⅲ)棱上是否存在一点,使平面?证明你的结论。

2012级高二年级下学期阶段测试

数学试题(理)参考答案 (2014.3)

一、选择题:

1-5 DDCBC , 6-10 BCADB

二、填空题: 11. 12. 13. 14.  15. ①②④

三、解答题: 16(本小题满分12分)

解:(Ⅰ)求导得

由于的图象与直线相切于点(1,-11)

所以,即  解得 .(6分)

(Ⅱ)由得

令,解得;又令,解得

所以当时,是增函数;当时,也是增函数;

但时,是减函数. (12分)

17. (本题满分12分)



18.(本小题满分12分)

解:(I)因故

令

由已知

又令由已知

因此解得

因此

又因为故曲线处的切线方程为

(6分)

(II)由(I)知,从而有

令

当上为减函数;

当在(0,3)上为增函数;

当时,上为减函数;

从而函数处取得极小值处取得极大值(12分)

19.(本小题满分12分)

解:(Ⅰ)建立如图所示的空间直角坐标系,则(0,0,1),M(0,,0),C(0,1,0), N (0,1,) , A (),所以,

,,。

因为所以,同法可得。故﹤﹥为二面角—AM—N的平面角

∴﹤﹥=

故所求二面角—AM—N的平面角的余弦值为。(6分)

(Ⅱ)设n=(x,y,z)为平面AMN的一个法向量,则由得

 故可取

设与n的夹角为a,则。

所以到平面AMN的距离为。(12分)

20(本小题满分13分)

解:(I)∵当=5时,=11,∴=11,解得=2;(4分)

(II)由(I)知该商品每日的销售量=(3<<6),

∴该商城每日的销售该商品的利润

==(3<<6),(7分)

∴==(9分)

当变化时,,的变化情况如下表:



(3,4)

4

(4,6)





+

0

-





单调递增

极大值42

单调递减



由上表可得,=4是函数在区间(3,6)内的极大值点,也是最大值点,

∴当=4时,=42. (13分)

答:当销售价格定为4元/千克时,商场每日销售该商品所获得的利润最大.

21、(本小题满分14分)

解:(1)∵PA=AC=a,PB=PD=

∴

∴PA⊥AB且PA⊥AD,∴PA⊥平面ABCD,

(2)∵底面ABCD是菱形,∴AC⊥BD,设AC∩BD=O,(5分)

∴以O为原点,建立如图所示的空间直角坐标系,则各点坐标分别为:

∵ 点E在PD上,且PE:ED=2:1. ∴,即:

∴ ,即点E的坐标为

又平面DAC的一个法向量为

设平面EAC的一个法向量为,

由,得

∴

∴由图可知二面角E-AC-D的大小为.(10分)

(3)设在CP上存在点F,满足题设条件,

由,得

∴

依题意,则有

∴

∴点F为PC中点时,满足题设条件. (14分)

::立即下载::
进入下载页面
下载出错
相关资源:
·山东省济宁市微山一中2013-2014学年高二下学期第一次月考数学文试题
·四川省邛崃市高埂中学2013-2014学年高二下学期收心考试数学试题
·四川省成都七中实验学校2013-2014学年高二2月入学考试数学试题
·四川省射洪县射洪中学2013-2014学年高二下学期第一次月考数学理试题
·四川省射洪县射洪中学2013-2014学年高二下学期第一次月考数学文试题
·河南省内黄县第四高级中学2013-2014学年高二上学期期末考试数学试题
·河北省衡水中学2013-2014学年高二下学期一调考试数学理试题
·河北省衡水中学2013-2014学年高二下学期一调考试数学文试题
·广东省肇庆市第四中学2013-2014学年高二上学期第二次月考数学理试题
·广东省肇庆市第四中学2013-2014学年高二上学期第二次月考数学文试题  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号