http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高三数学试卷 -> 下载
试卷资源详情
资源名称 天津一中2016届高三下学期第二次考前冲刺热身试卷 数学(理)
文件大小 324KB
所属分类 高三数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2016/8/5 10:35:15
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
简介:

天津一中2015-2016-2高三数学(理)第二次考前冲刺热身试卷

本试卷共三道大题,共150分,考试用时120分钟.

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目的要求.

(1)若集合 ,那么 ( ).

(A)

(B)

(C)

(D)



(2)已知实数满足则目标函数的最大值为( ).

(A)

(B)

(C)4

(D)



(3)阅读下边的程序框图,运行相应的程序,若输入的值为1,则输出的值为( ).

(A) (B)

(C) (D)





(4)已知等差数列的公差,且成等比数列,若是数列的前项的和,则的最小值为( ).

(A)

(B)

(C)

(D)



(5)已知,,且是的必要不充分条件,则实数的取值范围是( ).

(A)

(B)

(C)

(D)



(6)已知双曲线 与抛物线共焦点,双曲线与抛物线的一公共点到抛物线准线的距离为2,双曲线的离心率为 ,则的值是( ).

(A)

(B)

(C)4

(D)



(7)设且,,,则的大小关系是( ).

(A)

(B)

(C)

(D)



(8)设函数在上存在导数,对任意的,有,且在

上,若,则实数的取值范围为( ).

(A)

(B)

(C)

(D)



二、填空题:本大题共6小题,每小题5分,共30分﹒把答案填在题中横线上.

(9)在复平面内,复数的共轭复数对应的点位于第 象限.

(10)几何体的三视图如图所示,其侧视图是一个等边三角形,则这个几何体的体积是 .

(11)如图,⊙是以为直径的圆,点在圆上,在和中,,

,的延长线与的延长线交于点,

若,,则的长为 .

(12)已知二项式的展开式中,各项系数的和与其各项二项式系数的和之比为64,

展开式中的系数等于 .

(13) 在锐角△中,分别为角所对的边,且,=,且△的面积为,则=       .

(14)在矩形中,为矩形内一点,且若则的最大值为        .

三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.

(15)(本小题满分13分)

设函数.

(Ⅰ)求的最小正周期;

(Ⅱ)若函数与的图象关于直线对称,求当时

的最大值.

(16)(本小题满分13分)

现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.

(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;

(Ⅱ)用,分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.

(17)(本小题满分13分)

如图,已知正方形和矩形所在的平面互相垂直,,,

是线段的中点.

(Ⅰ)求证://平面;?

(Ⅱ)求二面角的大小;

(Ⅲ)试在线段上确定一点,使得与所成的角是.

(18)(本小题满分13分)

已知数列的前项和,数列满足.

(Ⅰ)求证:数列是等差数列,并求数列的通项公式;

(Ⅱ)设,数列的前项和为,求满足的的最大值.

(19) (本小题满分14分)

椭圆的中心在原点,焦点在轴上,焦距为,且与椭圆

有相同离心率.

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆交于不同的两点,且椭圆上存在点,满足,(为坐标原点),求实数取值范围.

(20) (本小题满分14分)

已知函数.

(Ⅰ) 若,证明:函数是上的减函数;

(Ⅱ) 若曲线在点处的切线与直线平行,求的值;

(Ⅲ) 若,证明:(其中是自然对数的底数).

数学(理)第二次冲刺热身参考答案

一、选择题:本大题共8小题,每小题5分,满分40分.

(1)A. 提示:

(2)C. 提示:相交于点 ,

∴.

(3)B. 提示: 

(4)A.提示:.

得到 .

所求的式子.

(5)C.提示:

,由已知得,.

(6)D.提示:由抛物线的焦点①

设公共点,代入到抛物线方程得到,

从而② 得到.

(7)B.提示:提示:.

..

(8)C.提示:令

得到,为奇函数.又,单调递增,而由奇函数性质得到上单调递增. 已知,且,.  解得.

二、填空题:本大题6小题,每小题5分,满分30分.

(9)三. 提示:.

(10) 提示: 几何体是一个半圆锥与一个四棱锥的组合体,设圆锥的体积为,四棱锥的体积为,高为,则

,

.

(11) 提示:连接,得.

又,.有.

,的切线.于是,.

由,得到△与△相似.

. 已知为⊙的直径,则是直角.

在中,由勾股定理,解得.

(12).提示:令,得,即,.

.

(13).提示:由正弦定理,.

在锐角△中,.

由余弦定理,,即.

.

(14). 提示:以A为原点AB所在直线为x轴,AD所在直线为y轴建立直角坐标系则.

设,则. 代入

整理得又因为

(当且仅当时取得最大值).

三、解答题:本大题6小题,满分80分.

(15) 本题满分13分.

解:(Ⅰ)= ---------------------2分

= = .---------------------4分

故的最小正周期为. -----------------------------------6分

(Ⅱ)在的图象上任取一点,它关于的对称点---7分

  由题设条件,点在的图象上,从而



          = =-------------------10分

当时,, ------------------------------------------11分

因此在区间上的最大值为.--------13分

(16) 本题满分13分.

解:(Ⅰ)依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的概率为.

设“这4个人中恰有人去参加甲游戏”为事件,------------------------1分

则.

这4个人中恰有2人去参加甲游戏的概率.………………4分

(Ⅱ) 的所有可能取值为0,2,4. …………………………………………5分

由于与互斥,与互斥,

, …………………………………………7分

, …………………………………………9分

. …………………………………………11分

所以的分布列是



0

2

4













所以随机变量的数学期望. ………………………13分

(17) 本题满分13分.

解: (Ⅰ)记与的交点为,连接,

∵四边形是矩形,分别是的中点,

∴四边形是平行四边形,∴∥.…………………………2分

∵平面,平面,∴∥平面.……………………4分

(Ⅱ)?建立如图所示的空间直角坐标系

?则点的坐标分别是,(0,0,1),

点的坐标分别是,,

∴. …………………………………5分

?∵,∴平面.

∴ 为平面的法向量.…………………………………6分

又∵,

,

∴为平面法向量. …………………………………7分

又∵,∴与的夹角是60o.…………………………………8分

即所求二面角的大小是60o. …………………………………9分

(Ⅲ)设

::立即下载::
进入下载页面
下载出错
相关资源:
·天津一中2016届高三下学期第二次考前冲刺热身试卷 数学(文)
·四川绵阳南山中学2016届高三“绵阳三诊”热身考试 数学理
·四川绵阳南山中学2016届高三“绵阳三诊”热身考试 数学文
·四川省雅安市天全中学2016届高三3月月考数学(理)试题
·四川省雅安市2016届高三第三次诊断考试 数学(理)
·四川省雅安市2016届高三第三次诊断考试 数学(文)
·四川省雅安中学2016届高三考前模拟(一)理数试题
·四川省雅安中学2016届高三考前模拟(一)文数试题
·四川省遂宁市2016届高三第二次诊断考试数学(理)试题
·四川省遂宁市2016届高三第二次诊断考试数学(文)试题  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号