设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| 简介:
北京市东城区2015-2016学年度第二学期高三综合练习(二) 数学 (理科) 学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。 第Ⅰ卷(选择题 共40分) 一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项) 1.集合,,则 A. B. C. D. 2.已知命题p:x∈R有sinx1,则﹁p 为 A. B. C. D. 3.如图,为正三角形,,底面,若,,则多面体在平面上的投影的面积为 A. B. C. D. 4.若向量,,满足条件与共线,则的值 A. B. C. D. 5.成等差数列的三个正数的和等于,并且这三个数分别加上、、后 成 为等比数列中的、、,则数列的通项公式为 A. B. C. D. 6.一名顾客计划到商场购物,他有三张优惠劵,每张优惠券只能购买一件商品。根据购买商品的标价,三张优惠券的优惠方式不同,具体如下: 优惠劵1:若标价超过50元,则付款时减免标价的10%; 优惠劵2:若标价超过100元,则付款时减免20元; 优惠劵3:若标价超过100元,则超过100元的部分减免18%。 若顾客购买某商品后,使用优惠劵1比优惠劵2、优惠劵3减免的都多,则他购买的商品的标价可能为 179元? ?B. 199元? ? C. 219元? D. 239元
7. 已知函数 则的值为 A. B. C. D. 8.集合,若,已知,定义集合中元素间的运算,称为运算,此运算满足以下运算规律: ①任意有 ②任意有 (其中) ③任意,有 ④任意有,且成立的充分必要条件是为向量. 如果,那么下列运算属于正确运算的是 A. B. C. D. 第Ⅱ卷(共110分) 二、填空题(本大题共6小题,每小题5分,共30分) 9.设 是虚数单位,复数所对应的点在第一象限,则实数的取值范围为___. 10.设变量x,y满足约束条件,则目标函数的最大值为 . 11.已知直线与直线相交于点,又点, 则 . 12.为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为,,由此得到频率分布直方图如图. 则产品数量位于范围内的频率为_____;这20名工人中一天生产该产品数量在的人数是 . 13.若点和点分别为双曲线(>0)的中心和左焦点,点为双曲线右支上的任意一点,则的取值范围为___. 14.已知函数,关于此函数的说法正确的序号是__. ①为周期函数; ②有对称轴; ③为的对称中心 ;④. 三、解答题(本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程) 15.(本小题共13分) 已知函数(),且函数的最小正周期为. (Ⅰ)求的值; (Ⅱ)求在区间上的最大值和最小值.
16.(本小题共14分) 如图,是等腰直角三角形,,分别为的中点,沿将折起,得到如图所示的四棱锥 (Ⅰ)求证: ; (Ⅱ)当四棱锥体积取最大值时, (i)若为中点,求异面直线与所成角; (ii)在中交于,求二面角的余弦值. 17.(本小题共13分) 在2015-2016赛季联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数,表示投篮次数,表示命中次数),假设各场比赛相互独立. 场次 球员 甲 乙 根据统计表的信息: (Ⅰ)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率; (Ⅱ)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率; (Ⅲ)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望. 18.(本小题共14分) 已知,. (Ⅰ)求的单调区间; (Ⅱ)当时,求证:对于,恒成立; (Ⅲ)若存在,使得当时,恒有成立,试求的取值范围. 19.(本小题共13分) 已知椭圆过点(,),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形. (Ⅰ)求椭圆的标准方程; (Ⅱ)设是椭圆上的动点,是轴上的定点,求的最小值及取最小值时点的坐标. 20.(本小题共13分) 数列中,定义:,. (Ⅰ)若,,求; (Ⅱ) 若,,求证此数列满足; (Ⅲ)若,且数列的周期为4,即,写出所有符合条件的. 北京市东城区2015-2016学年度第二学期高三综合练习(二) 数学参考答案及评分标准 (理科) 第Ⅰ卷(选择题 共40分) 一、选择题(本大题共8小题,每小题5分,共40分) 1.B 2.C 3.A 4.D 5.A 6.C 7.A 8.D 第Ⅱ卷(共110分) 二、填空题(本大题共6小题,每小题5分,共30分) 9. 10. 11. 12. . 13. 14. ①②④ 三、解答题(本大题共6小题,共80分) 15.(本小题共13分) 解:(Ⅰ)因为, 又的最小正周期为, 所以,即=2. --------------------------------------------------------------------6分 (Ⅱ)由(Ⅰ)可知, 因为, 所以. 由正弦函数的性质可知,当,即时,函数取得最大值,最大值为f()=3; 当时,即时,函数取得最小值,最小值为f()=0. ------13分
16.(本小题共14分) 证明:(Ⅰ)因为是等腰直角三角形,分别为的中点, 所以,. 又因为, 所以. 由于, 所以有. -------------------------4分 解:(Ⅱ)(i) 取中点,连接, 由于为中位线,以及为中位线, 所以四边形为平行四边形. 直线与所成角就是与所成角. 所以四棱锥体积取最大值时,垂直于底面. 此时为等腰直角三角形,为中线, 所以直线. 又因为, 所以直线与所成角为. -------------------------------------------------------10分 (ii) 因为四棱锥体积取最大值, 分别以所在直线为轴、轴、轴,建立空间直角坐标系如图, 则,,,,. 设平面的一个法向量为,由得, 取,得 | ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||