http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高三数学试卷 -> 下载
试卷资源详情
资源名称 北京市东城区示范校2015届高三上学期综合能力测试(数学文)
文件大小 427KB
所属分类 高三数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2015-2-9 14:55:01
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
简介:

北京市东城区普通高中示范校2015届上学期高三年级综合能力测试

数学试卷(文科)

本试卷分第I卷和第II卷两部分,共150分。考试时长120分钟。

第I卷(选择题 共40分)

一、选择题。(本大题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项)

1. 已知集合,,则( )

A.  B.  C.  D. 

2. 已知复数,,若是纯虚数,则实数的值为( )

A.  B. 1 C. 2 D. 4

3. “”是“”成立的( )

A. 充分不必要条件 B. 必要不充分条件

C. 充要条件 D. 既不充分也不必要条件

4. 下图是一算法的程序框图,若此程序运行结果为,则在判断框中应填入关于的判断条件是( )



A.  B.  C.  D. 

5. 已知一个棱锥的三视图如下,根据图中标出的尺寸(单位:cm),可得这个棱锥的侧面积是( )



A.  B.  C.  D. 

6. 已知有唯一的零点,则实数的值为( )

A. -3 B. -2 C. -1 D. 0

7. 如图,直线与圆及抛物线依次交于A、B、C、D四点,则( )



A. 13 B. 14 C. 15 D. 16

8. 已知不等式在上恒成立,则实数的取值范围是( )

A.  B.  C.  D. 

第II卷(非选择题 共110分)

二、填空题。(本大题共6小题,每小题5分,共30分)

9. 不等式组表示的平面区域的面积为__________。

10. 设平面向量,,若,则=__________。

11. 在等差数列中,,则__________。

12. 直线被圆截得的弦长为__________。

13. 已知,且,则的值为__________。

14. 已知数集具有性质P:对任意,其中,均有属于A,若,则__________。

三、解答题。(本大题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程)

15. (本小题共13分)

设数列的前项和为,且。

(I)求数列的通项公式;

(II)若数列满足,求数列的通项公式。

16. (本小题共13分)

在△ABC中,分别是角的对边,满足,且。

(I)求C的大小;

(II)求的最大值,并求取得最大值时角A,B的值。

17. (本小题共14分)

如图,将矩形ABCD沿对角线BD把△ABD折起,使A点移到点,且在平面BCD上的射影O恰好在CD上。



(I)求证:BC⊥;

(II)求证:平面⊥平面;

(III)若AB=10,BC=6,求三棱锥的体积。

18. (本小题共13分)

设,已知函数。

(I)当时,求函数的单调区间;

(II)若对任意的,有恒成立,求实数的取值范围。

19. (本小题共13分)

已知椭圆的左焦点为,过点M(-3,0)作一条斜率大于0的直线与W交于不同的两点A、B,延长BF交W于点C。

(I)求椭圆W的离心率;

(II)求证:点A与点C关于轴对称。

20. (本小题共14分)

已知定义在上的函数

(I)求证:存在唯一的零点,且零点属于(3,4);

(II)若,且对任意的1恒成立,求的最大值。

参考答案:

一、选择题(本大题共8小题,每小题5分,共40分)

1. A 2. D 3. A 4. B 5. D 6. C 7. B 8. A

二、填空题(本大题共6小题,每小题5分,共30分)

9. 1 10. 5 11.  12.  13.  14. 30

三、解答题(本大题共6小题,共80分)

15. (共13分)

解:(I)因为,

则,

所以当时,,

整理得,

由,令,得,解得。

所以是首项为1,公比为2的等比数列,可得(6分)

(II)因为,

由,得,

由累加得

,

当时也满足,所以。(13分)

16. (共13分)

解:(I)由,得

,

又,所以

由正弦定理得。

因为,所以,从而,即。(6分)

(II)由余弦定理,得,

又,所以,于是。

当时,取得最大值(13分)

17. (共14分)

解:(I)因为在平面上的射影O在CD上,

所以⊥平面BCD。

又BC平面BCD,

所以BC⊥。

又BC⊥CO,CO,

平面,平面,

所以BC⊥平面。

又平面,

所以。(5分)

(II)因为矩形ABCD,

所以⊥。

由(I)知BC⊥。

又平面,

所以。

又,

所以平面。(10分)

(III)因为,

所以。

因为CD=10,,所以。

所以。(14分)

18. (共13分)

解:(I)当时,,

则,

由,得,或,

由,得,

所以的单调递增区间为,单调递减区间为(0,2)。(6分)

(II)依题意,对,,

这等价于,不等式对恒成立。

令,

则,

所以在区间上是减函数,

所以的最小值为。

所以,即实数的取值范围为。(13分)

19. (共13分)

解:(I)由题意,

解得。

所以椭圆。

离心率。(5分)



(II)设直线的方程为。

联立

得。

由直线与椭圆W交于A、B两点,可知

△,解得。

设点A,B的坐标分别为(),,

则,,

。

因为F(-2,0),设点A关于轴的对称点为C′,则C′(),

所以,。

又因为







,

所以B,F,C′共线,从而C与C′重合,故点A与点C关于轴对称。(13分)

20. (共14分)

解:(I)由,可得,

故在上单调递增,

而,,

所以存在唯一的零点。(7分)

(II)由(I)存在唯一的零点显然满足:,且当时,

;当时,。

当时,等价于。

设,

则,故与同号,

因此当时,;当时,。

所以在上单调递减,在上单调递增,

故。

由题意有,又,而,故的最大值是3。(14分)

欢迎访问“高中试卷网”——http://sj.fjjy.org

::立即下载::
进入下载页面
下载出错
相关资源:
·北京市东城区2015届高三上学期期末教学统一检测数学(文)试题
·内蒙古赤峰市宁城县2015届高三12月月考数学理试题
·内蒙古赤峰市宁城县2015届高三12月月考数学文试题
·内蒙古赤峰市2015届高三12月模拟统考数学理试题
·内蒙古赤峰市2015届高三12月模拟统考数学文试题
·内蒙古第一机械制造集团有限公司第一中学2015届高三12月月考数学理试题
·内蒙古第一机械制造集团有限公司第一中学2015届高三12月月考数学文试题
·内蒙古巴彦淖尔市第一中学2015届高三上学期期中考试数学理试题
·内蒙古巴彦淖尔市第一中学2015届高三上学期期中考试数学文试题
·内蒙古北方重工业集团有限公司第三中学2015届高三12月月考数学理试题  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号