http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高三数学试卷 -> 下载
试卷资源详情
资源名称 湖南省师大附中、长沙市一中等六校2014届高三4月联考数学(文)试题
文件大小 1.9MB
所属分类 高三数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2014-4-21 18:11:25
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
简介:

湖南省2014届高三六校联考

数学(文)试题

本试题卷包括选择题、填空题和解答题三部分,时量120分钟,满分150分

一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.已知P={ -1,0,},Q={y|y= sin,∈R),则PQ=

A. B.{0} C.{ -1,0} D.{-1,0,)

2.已知i为虚数单位,若=y+2i,x,y∈R,则复数x+yi=

A. 2+i B.-2-i C.l-2i D.1+2i

3.“log2a>log2b”是“2a>2b”的

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

4.已知倾斜角为a的直线l与直线x-2y+2=0平行,则tan 2a的值为

A. B. C. D.

5.若变量x,y满足,实数z是2x和-4y的等差中项,则z的最大值等于

A.1 B.2 C.3 D.4

6.已知x.y∈R+,a=(x,1),b=(1,y-1),若a⊥b,则的最小值为

A.4 B.9 C.8 D.10

7.设函数f(x)=是定义在R上的函数,其中f(x)的导函数为f′(x),满足f′(x)<

f(x)对于x∈R恒成立,则

A.f(2)>e2f(0),f(2 014>e2 014f(0)

B.f(2)>e2f(0),,(2 014)

C.f(2)

D.f(2)

8.阅读如图所示的程序框图,运行相应的程序,则输出的结果是

A. B.

C.- D.0

9.已知双曲线(m>0,n>0)的离心率为2,有一个焦点与抛物线y2 =16x的焦点重合,则mn的值为

A.4 B.12 C.16 D.48

10.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈

[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为 “关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围是

A. B.[-1,0] C. D.

二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上.

11.在直角坐标系中,参数方程为为参数)的直线l,被以原点为极点,x轴的正半轴为极轴,极坐标方程为的曲线C所截,则截得的弦长是 .

12.设函数f(x)=x2-5x+4(l≤x≤8),若从区间[1,8]内随机选取一个实数x0,则所选取的实数x0满足f(x0)≤0的概率为 .

13.某四棱锥的三视图如图所示,该四棱锥的体积是 .

14.①函数y= sin在[0,]上是减函数;

②点A(1,1)、B(2,7)在直线3x-y=0的两侧;

③数列{an}为递减的等差数列,a1+a5=0,设数列{an}的前n项和为Sn,则当n=4时,Sn取得最大值;

④定义运算,则函数f(x)=

的图象在点(1,)处的切线方程是6x-3y-5=0.

其中正确命题的序号是 (把所有正确命题的序号都写上).

15.对于实数x,将满足“0≤y

①; ②。

(1)当时,数列{an}的通项公式为 。

(2)当时,对任意的都有,则a的值为 。

三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.

16.(本小题满分12分)

某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示,

(I)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?

(Ⅱ)在(I)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.



17.(本小题满分12分)

在△ABC中,a,b,c分别是角A、C的对边,m=(b,2a-c),n=(cos B,cos C)且m∥n .

(I)求角B的大小;

(Ⅱ)设,且f(x)的最小正周期为,求f(x)在区间上的最大值和最小值。

18.(本小题满分12分)

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PB、PD与平面ABCD所成角的正切值依次是1和,AP= 2,E、F依次是PB、PC的中点.

(I)求证:PB⊥平面AEFD;

(Ⅱ)求直线EC与平面PAD所成角的正弦值.



19.(本小题满分13分)

已知函数f(x)=-x3+mx在(0,1)上是增函数.

(I)实数m的取值集合为A,当m取值集合A中的最小值时,定义数列{an}:满足a1=3,且,求数列{an}的通项公式;

(Ⅱ)根据(I)结论,若,数列{bn}的前n项和为Sn,求证:。

20.(本小题满分13分)

已知命题“若点M(x0,y0)是圆x2+y2=r2上一点,则过点M的圆的切线方程为x0x+y0y=r2”.

(I)根据上述命题类比:“若点M(x0,y0)是椭圆(a>b>0)上一点,则过点M的切线方程为 ”(写出直线的方程,不必证明).

(Ⅱ)已知椭圆C:(a>b>0)的左焦点为F1(-1,0),且经过点(1,).

(i)求椭圆C的方程;

(ii)过F1的直线l交椭圆C于A、B两点,过点A、B分别作椭圆的两条切线,求其交点的轨迹方程。

21.(本小题满分13分)

已知f(x)是定义在上的奇函数,当x∈(0,+)时,f(x)=ax+2lnx(a∈R).

(I)求f(x)的解析式;

(Ⅱ)是否存在负实数a,使得当x∈[-e,0)时,f(x)的最小值是4?如果存在,求出a的值;如果不存在,请说明理由;

(Ⅲ)对x∈D,如果函数F(x)的图象在函数G(x)的图象的下方(没有公共点),则称函数 F(x)在D上被函数G(x)覆盖,若函数f(x)在区间x∈(1,+)上被函数g(x)=x3覆盖,求实数a的取值范围.

(注:e是自然对数的底数,[ln(-x)]′ =)

参考答案













::立即下载::
进入下载页面
下载出错
相关资源:
·湖北省武汉市2014届高三下学期四月调考数学理试题
·湖北省武汉市2014届高三下学期四月调考数学文试题
·湖北省七市(州)2014届高三4月联合考试 数学理
·湖北省七市(州)2014届高三4月联合考试 数学文
·浙江省嘉兴市2014届高三4月第二次模拟考试数学(理)试题
·河北省唐山市2014届高三4月第二次模拟数学文试题
·数学理卷·2014届河北省唐山市高三第二次模拟考试(2014.04)WORD版
·天津一中2013-2014下学期高三四月考 数学(文)
·北京市房山区2014届高三4月模拟(一模)数学理试题
·北京市房山区2014届高三4月模拟(一模)数学文试题  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号