http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高二数学试卷 -> 下载
试卷资源详情
资源名称 江苏省射阳县第二中学2014-2015学年高二上学期期中考试数学试题
文件大小 129KB
所属分类 高二数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2015-3-15 19:29:02
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
简介:



1、抛物线y=4x2的焦点坐标是________.

2.“x>0”是“x≠0”的__ ____条件.(“充分不必要条件”、“必要不充分”、“充要条件”、“既不充分也不必要条件”).

3、按如图所示的流程图运算,若输入x=20,则输出的k= __.

4、某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为_ 的学生

5、口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为_ _

6.已知函数f(x)=f′cos x+sin x,则f的值为_ ____

7 、中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为___ ____ ____.

8.曲线C的方程为+=1,其中m,n是将一枚骰子先后投掷两次所得点数,事件A=“方程+=1表示焦点在x轴上的椭圆”,那么P(A)=___ __.

9、下列四个结论正确的是_ _ ____.(填序号)

① “x≠0”是“x+|x|>0”的必要不充分条件;

② 已知a、b∈R,则“|a+b|=|a|+|b|”的充要条件是ab>0;

③ “a>0,且Δ=b2-4ac≤0”是“一元二次不等式ax2+bx+c≥0的解集是R”的充要条件;

④ “x≠1”是“x2≠1”的充分不必要条件.

10.已知△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为_ __.

11、已知点A(0,2),抛物线y2=2px(p>0)的焦点为F,准线为l,线段FA交抛物线于点B,过B作l的垂线,垂足为M,若AM⊥MF,则p=

12. 已知命题:“x∈R,ax2-ax-20” ,如果命题是假命题,则实数a的取值范围是_ ____.

13. 在平面直角坐标系xOy中,椭圆+=1(a>b>0)的左焦点为F,右顶点为A,P是椭圆上一点,l为左准线,PQ⊥l,垂足为Q.若四边形PQFA为平行四边形,则椭圆的离心率e的取值范围是____ ____.

14、若存在过点O(0,0)的直线l与曲线f(x)=x3-3x2+2x和y=x2+a都相切,则

a的值是__ __.

二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)

15.(本题满分14分)

已知双曲线过点(3,-2),且与椭圆4x2+9y2=36有相同的焦点.

(1) 求双曲线的标准方程;

(2) 求以双曲线的右准线为准线的抛物线的标准方程.



17、(本题满分15分)

已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).

(1)若函数f(x)的图象过原点,且在原点处的切线斜率为-3,求a,b的值;

(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.

18、(本题满分15分)

中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=2,椭圆的长半轴与双曲线半实轴之差为4,离心率之比为3∶7.

(1)求这两曲线方程;

(2)若P为这两曲线的一个交点,求cos∠F1PF2的值.

19、(本题满分16分)

设a∈{2,4},b∈{1,3},函数f(x)=ax2+bx+1.

(1)求f(x)在区间(-∞,-1]上是减函数的概率;

(2)从f(x)中随机抽取两个,求它们在(1,f(1))处的切线互相平行的概率.

20、(本题满分16分)

如图,在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的左、右顶点分别是A1,A2,上、下顶点分别为B2,B1,点P(m>0)是椭圆C上一点,PO⊥A2B2,直线PO分别交A1B1,A2B2于点M,N.

(1)求椭圆的离心率;

(2)若MN=,求椭圆C的方程;

(3)在第(2)问条件下,求点 Q()与椭圆C上任意一点T的距离d的最小值.

高二数学答案

一、填空题 本大题共14小题,每小题5分,共计70分. 请把答案直接填写在答题卡相应位置上.

1、抛物线y=4x2的焦点坐标是__.(0,)______

2.“x>0”是“x≠0”的____充分不必要 ____条件.(“充分不必要条件”、“必要不充分”、“充要条件”、“既不充分也不必要条件”).

3、按如图所示的流程图运算,若输入x=20,则输出的k=_3__.

4、某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为_37__的学生

5、口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为__1/3__

6.已知函数f(x)=f′cos x+sin x,则f的值为__1_____

7 、中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为___ x2-y2=2_____________.

8.曲线C的方程为+=1,其中m,n是将一枚骰子先后投掷两次所得点数,事件A=“方程+=1表示焦点在x轴上的椭圆”,那么P(A)=_____.

9、下列四个结论正确的是__①③______.(填序号)

① “x≠0”是“x+|x|>0”的必要不充分条件;

② 已知a、b∈R,则“|a+b|=|a|+|b|”的充要条件是ab>0;

③ “a>0,且Δ=b2-4ac≤0”是“一元二次不等式ax2+bx+c≥0的解集是R”的充要条件;

④ “x≠1”是“x2≠1”的充分不必要条件.

10.已知△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为_____.

11、已知点A(0,2),抛物线y2=2px(p>0)的焦点为F,准线为l,线段FA交抛物线于点B,过B作l的垂线,垂足为M,若AM⊥MF,则p=___

12. 已知命题:“x∈R,ax2-ax-20” ,如果命题是假命题,则实数a的取值范围是___(-8,0]_____.

13. 在平面直角坐标系xOy中,椭圆+=1(a>b>0)的左焦点为F,右顶点为A,P是椭圆上一点,l为左准线,PQ⊥l,垂足为Q.若四边形PQFA为平行四边形,则椭圆的离心率e的取值范围是___(-1,1)_____.

14、若存在过点O(0,0)的直线l与曲线f(x)=x3-3x2+2x和y=x2+a都相切,则a的值是____1或____.

二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)

16.(本题满分14分)

已知命题:函数y=loga(x+1)在(0,+∞)内单调递减;命题:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.为真,为假,求a的取值范围.

解:当p为真时:0

当q为真时:a>5/2或a<1/2---------------------------------------------8分

有题意知:p,q一真一假-----------------------------------------------10分

------------------------------------------------14分

17、(本题满分15分)

已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).

(1)若函数f(x)的图象过原点,且在原点处的切线斜率为-3,求a,b的值;

(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.

解 f′(x)=3x2+2(1-a)x-a(a+2).

(1)由题意得---------------------------------4分

解得b=0,a=-3或1.---------------------------------------------------------------------4分

(2)∵曲线y=f(x)存在两条垂直于y轴的切线,

∴关于x的方程f′(x)=3x2+2(1-a)x-a(a+2)=0有两个不相等的实数根,--------10分

∴Δ=4(1-a)2+12a(a+2)>0,即4a2+4a+1>0,

∴a≠-.

∴a的取值范围是∪.---------------------------------15分

18、(本题满分15分)

中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=2,椭圆的长半轴与双曲线半实轴之差为4,离心率之比为3∶7.

(1)求这两曲线方程;

(2)若P为这两曲线的一个交点,求cos∠F1PF2的值.

解 (1)由已知:c=,设椭圆长、短半轴长分别为a,b,双曲线半实、虚轴长分别为m,n,

则解得a=7,m=3.∴b=6,n=2.

∴椭圆方程为+=1,------------------------------------------------- --------------------4分

双曲线方程为-=1.-------------------------------------------------------------- ----------8分

(2)不妨设F1,F2分别为左、右焦点,P是第一象限的一个交点,则|PF1|+|PF2|=14,|PF1|-|PF2|=6,

所以|PF1|=10,|PF2|=4.又|F1F2|=2,

∴cos∠F1PF2===.----------------------------15分

19、(本题满分16分)

设a∈{2,4},b∈{1,3},函数f(x)=ax2+bx+1.

(1)求f(x)在区间(-∞,-1]上是减函数的概率;

(2)从f(x)中随机抽取两个,求它们在(1,f(1))处的切线互相平行的概率.

解:(1)f(x)共有四种等可能基本事件即(a,b)取(2,1)(2,3)(4,1)(4,3)

记事件A为“f(x)在区间(-∞,-1]上是减函数”

有条件知f(x)开口一定向上,对称轴为x=

所以事件A共有三种(2,1)(4,1)(4,3)等可能基本事件

则P(A)=.

所以f(x)在区间(-∞,-1]上是减函数的概率为.-------------------8分

(2)由(1)可知,函数f(x)共有4种可能,从中随机抽取两个,有6种抽法.

∵函数f(x)在(1,f(1))处的切线的斜率为f′(1)=a+b,

∴这两个函数中的a与b之和应该相等,而只有(2,3),(4,1)这1组满足,

∴概率为.----------------------------------------------------16分

20、(本题满分16分)

如图,在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的左、右顶点分别是A1,A2,上、下顶点分别为B2,B1,点P(m>0)是椭圆C上一点,PO⊥A2B2,直线PO分别交A1B1,A2B2于点M,N.

(1)求椭圆的离心率;

(2)若MN=,求椭圆C的方程;

(3)在第(2)问条件下,求点 Q()与椭圆C上任意一点T的距离d的最小值.

解:(1)由题意P,kA2B2·kOP=-1,

所以4b2=3a2=4(a2-c2),所以a2=4c2,所以e=. ①---------------5分

(2)因为MN==,

所以= ②

由①②得a2=4,b2=3,所以椭圆C的方程为+=1.--------------------10分

(3)

因为,所以当时TQ最小为-----------------------------16分

::立即下载::
进入下载页面
下载出错
相关资源:
·江苏省南通中学2014-2015学年高二上学期期中考试数学试题
·广西梧州市2014-2015学年高二上学期期末考试数学理试题
·广西梧州市2014-2015学年高二上学期期末考试数学文试题
·广东省汕头市金山中学2014-2015学年高二上学期第二次月考数学理试题
·广东省汕头市金山中学2014-2015学年高二上学期第二次月考数学文试题
·广东省惠阳高级中学2014-2015学年高二上学期第二次段考数学试题
·山西省太原市第五中学2014-2015学年高二12月月考数学理试题
·山西省太原市第五中学2014-2015学年高二12月月考数学文试题
·山西省大同市第一中学2014-2015学年高二12月月考数学理试题
·山西省大同市第一中学2014-2015学年高二12月月考数学文试题  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号