设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| 简介:
高一年级2015年摸底试题 数 学 时间:120分钟 满分:120分 温馨提示:请将答案写在答纸上 一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号写在答题卡上,每小题3分,共30分) 1.﹣的相反数是 A.2 B. ﹣2 C. D. ﹣ 2.宇宙现在的年龄约为200亿年,200亿用科学记数法表示为 A.0.2×1011 B. 2×1010 C. 200×108 D. 2×109 3.下列计算正确的是 A.x4+x4=x16 B. (﹣2a)2=﹣4a2 C.x7÷x5=x2 D. m2?m3=m6 4.一个几何体的三视图如图所示,那么这个几何体是 A.圆锥 B. 圆柱 C.长方体 D.三棱柱 5.把不等式组的解集表示在数轴上,正确的是 A. B. C. D. 6.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是 A. B. C. D. 7.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表: 第一次 第二次 第三次 第四次 甲 87 95 85 93 乙 80 80 90 90 据上表计算甲、乙两同学四次数学测试成绩的方差分别为=17、=25,下列说法正确的是 A. 甲同学四次数学测试成绩的平均数是89分 B. 甲同学四次数学测试成绩的中位数是90分 C. 乙同学四次数学测试成绩的众数是80分 D. 乙同学四次数学测试成绩较稳定 8..如图是二次函数y=ax2+bx+c=(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有 A.①③④ B. ②④⑤ C. ①②⑤ D. ②③⑤ 9.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是( )m. A. B. 5 C. D. 10.如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N从点A出发以每秒3个单位长度的速度沿A→D→C→B的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设△AMN的面积为s,运动时间为t秒,则能大致反映s与t的函数关系的图象是 A. B. C. D.
二、填空题(每小题3分,共24分) 11.计算的值是 ▲ . 12.方程(x+2)(x﹣3)=x+2的解是 ▲ . 13.函数=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为 ▲ . 14.如图,已知△ABC中,AB=5,AC=3,点D在边AB上,且∠ACD=∠B,则线段AD的长为 ▲ . 15.如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为 ▲ . 16.如图,直线y=﹣3x+3与x轴交于点B,与y轴交于点A,以线段AB为边,在第一象限内作正方形ABCD,点C落在双曲线y=(k≠0)上,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在双曲线y=(k≠0)上的点D1处,则a= ▲ . 三、解答题 17.(4分)化简: . 18.(本题10分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部分对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图. (1)抽查D厂家的零件为 ▲ 件,扇形统计图中D厂家对应的圆心角为 ▲ ; (2)抽查C厂家的零件为 ▲ 件,并将图1补充完整; (3)通过计算说明合格率排在前两名的是哪两个厂家; (4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率. 19.(7分)为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同 (1)求A、B两种学习用品的单价各是多少元? (2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件? 20.(本题6分)如图所示,小明家小区空地上有两颗笔直的树CD、EF.一天,他在A处测得树顶D的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A、B两处的距离为2米,两棵树之间的距离CE=3米,A、B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数) 21.(本题9分)如图1,AB为⊙O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为P,过点B的直线与线段AD的延长线交于点F,且∠F=∠ABC. (1)若CD=2,BP=4,求⊙O的半径; (2)求证:直线BF是⊙O的切线; (3)当点P与点O重合时,过点A作⊙O的切线交线段BC的延长线于点E,在其它条件不变的情况下,判断四边形AEBF是什么特殊的四边形?请在图2中补全图象并证明你的结论. 22.(本题10分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示. (1)a= ▲ ,b= ▲ ; (2)直接写出y1、y2与x之间的函数关系式; (3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人? 23.(本题12分)如图1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上. (1)请直接写出线段BE与线段CD的数量关系: ▲ ; (2)如图2,将图1中的△ABC绕点A顺时针旋转角α(0<α<360°), ①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由; ②当AC=ED时,探究在△ABC旋转的过程中,是否存在这样的角α,使以A、B、C、D四点为顶点的四边形是平行四边形?若存在,请直接写出角α的度数;若不存在,请说明理由.
24.(本题14分)如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F. (1)求抛物线解析式; (2)如图2,当点F恰好在抛物线上时,求线段OD的长; (3)在(2)的条件下: ①连接DF,求tan∠FDE的值; ②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.
高一年级2015年摸底试题答案 数 学 一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号写在答题卡上,每小题3分,共30分) 1.C 2.B 3.C 4.D 5.B 6.A 7.B 8.B 9.C 10.D 二、填空题(每小题3分,共24分) 11. 4﹣1;12. x1=﹣2,x2=4;13. x<1;14. ;15. 错误!未找到引用源。 ;16. 2。 三、解答题 17.解:原式=+?=+==, 18.(1) 500 , 90° ; (2) 400, 补充条形图的小长方形高为380; (3)A厂家合格率=630÷(2000×35%)=90%, B厂家合格率=370÷(2000×20%)=92.5%, C厂家合格率=95%, D厂家合格率470÷500=94%, 合格率排在前两名的是C、D两个厂家; (4)根据题意画树形图如下: 共有12种情况,选中C、D的有2种, 则P(选中C、D)==. 19.解:(1)设A型学习用品单价x元, 根据题意得:=, 解得:x=20, 经检验x=20是原方程的根, x+10=20+10=30. 答:A型学习用品20元,B型学习用品30元; (2)设可以购买B型学习用品a件,则A型学习用品(1000﹣a)件,由题意,得: 20(1000﹣a)+30a≤28000, 解得:a≤800. 答:最多购买B型学习用品800件. 20.解:设CD=xm, 在Rt△BCD中,∵∠DBC=45°, ∴BC=CD=x, 在Rt△DAC中,∵∠DAC=30°, ∴tan∠DAC=, ∴x+2=x,解得x=+1, ∴BC=CD=+1, 在Rt△FBE中,∵∠DBC=45°, ∴FE=BE=BC+CE=+1+3≈5.7. 答:树EF的高度约为5.7m. 21.(1)解:CD⊥AB, ∴PC=PD=CD=, 连接OC,设⊙O的半径为r,则PO=PB﹣r=4﹣r, 在RT△POC中,OC2=OP2+PC2, 即r2=(4﹣r)2+()2,解得r=. (2)证明:∵∠A=∠C,∠F=∠ABC, ∴△PBC∽△BFA, ∴∠ABF=∠CPB, ∵CD⊥AB, ∴∠ABF=∠CPB=90°, ∴直线BF是⊙O的切线; (3)四边形AEBF是平行四边形; 理由:∵CD⊥AB,垂足为P, ∴当点P与点O重合时,CD=AB, ∴OC=OD, ∵AE是⊙O的切线, ∴BA⊥AE, ∵CD⊥AB, ∴DC∥AE, ∵AO=OB, ∴OC是△ABE的中位线, ∴AE=2OC, ∵∠D=∠ABC,∠F=∠ABC. ∴∠D=∠F, ∴CD∥BF, ∵AE∥BF, ∵OA=OB, ∴OD是△ABF的中位线, ∴BF=2OD, ∴AE=BF, ∴四边形AEBF是平行四边形. 22.(1)a= 6 ,b= 8 ; (2)设y1=k1x, ∵函数图象经过点(0,0)和(10,480), ∴10k1=480, ∴k1=48, ∴y1=48x; 0≤x≤10时,设y2=k2x, ∵函数图象经过点(0,0)和(10,800), ∴10k2=800, ∴k2=80, ∴y2=80x, x>10时,设y2=kx+b, ∵函数图象经过点(10,800)和(20,1440), ∴, ∴, ∴y2=64x+160; ∴y2=; (3)设A团有n人,则B团的人数为(50﹣n), 当0≤n≤10时,48n+80(50﹣n)=3040, 解得n=30(不符合题意舍去), 当n>10时,48n+64(50﹣n)+160=3040, 解得n=20, 则50﹣n=50﹣20=30. 答:A团有20人,B团有30人. 23.(1) BE=CD ; (2)①∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°, ∴AB=AC,AE=AD, 由旋转的性质可得∠BAE=∠CAD, 在△BAE与△CAD中, , ∴△BAE≌△CAD(SAS), ∴BE=CD; ②∵以A、B、C、D四点为顶点的四边形是平行四边形, ∴∠ABC=∠ADC=45°, ∵AC=ED, ∴∠CAD=45°, ∴角α的度数是45°. 24.解:(1)如图1,∵抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点, ∴, 解得. ∴抛物线解析式为y=﹣x2+x+3; (2)如图2,∵点F恰好在抛物线上,C(0,3), ∴F的纵坐标为3, 把y=3代入y=﹣x2+x+3得,3=﹣x2+x+3; 解得x=0或x=4, ∴F(4,3), ∴OH=4, ∵∠CDE=90°, ∴∠ODC+∠EDH=90°, ∴∠OCD=∠EDH, 在△OCD和△HDE中, , ∴△OCD≌△HDE(AAS), ∴DH=OC=3, ∴OD=4﹣3=1; (3)①如图3,连接CE, ∵△OCD≌△HDE, ∴HE=OD=1, ∵BF=OC=3, ∴EF=3﹣1=2, ∵∠CDE=∠CFE=90°, ∴C、D、E、F四点共圆, ∴∠ECF=∠EDF, 在RT△CEF中,∵CF=OH=4, ∴tan∠ECF===, ∴tan∠FDE=; ②如图4,连接CE, ∵CD=DE,∠CDE=90°, ∴∠CED=45°, 过D点作DG1∥CE,交直线l于G1,过D点作DG2⊥CE,交直线l于G2,则∠EDG1=45°,∠EDG2=45° ∵EH=1,OH=4, ∴E(4,1), ∵C(0,3), ∴直线CE的解析式为y=﹣x+3, 设直线DG1的解析式为y=﹣x+m, ∵D(1,0), ∴0=﹣×1+m,解得m=, ∴直线DG1的解析式为y=﹣x+, 当x=4时,y=﹣+=﹣, ∴G1(4,﹣); 设直线DG2的解析式为y=2x+n, ∵D(1,0), ∴0=2×1+n,解得n=﹣2, ∴直线DG2的解析式为y=2x﹣2, 当x=4时,y=2×4﹣2=6, ∴G2(4,6); 综上,在直线l上,是否存在点G,使∠EDG=45°,点G的坐标为(4,﹣)或(4,6). 欢迎访问“高中试卷网”——http://sj.fjjy.org | ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||