设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| 简介:
2016年普通高等学校招生全国统一考试(天津卷) 数 学(文史类) 本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至5页. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回. 祝各位考生考试顺利! 第I卷 注意事项: 1、每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号. 2.本卷共8小题,每小题5分,共40分 参考公式: 如果事件 A,B 互斥,那么 ·如果事件 A,B 相互独立, P(A∪B)=P(A)+P(B). P(AB)=P(A) P(B). 柱体的体积公式V 柱体=Sh, 圆锥的体积公式V =Sh 其中 S 表示柱体的底面积其中 其中S表示锥体的底面积,h表示圆锥的高. h 表示棱柱的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合,,则=( ) (A) (B) (C) (D) 【答案】A 【解析】 试题分析:,选A. 考点:集合运算 (2)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为( ) (A) (B) (C) (D) 【答案】A 考点:概率 (3)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( ) 【答案】B 【解析】 试题分析:由题意得截去的是长方体前右上方顶点,故选B 考点:三视图 (4)已知双曲线的焦距为,且双曲线的一条渐近线与直线 垂直,则双曲线的方程为( ) (A) (B) (C) (D) 【答案】A 考点:双曲线渐近线 (5)设,,则“”是“”的( ) (A)充要条件 (B)充分而不必要条件 (C)必要而不充分条件 (D)既不充分也不必要条件 【答案】C 【解析】 试题分析:,所以充分性不成立;,必要性成立,故选C 考点:充要关系 (6)已知是定义在上的偶函数,且在区间上单调递增,若实数满足,则的取值范围是( ) (A) (B) (C) (D) 【答案】C 【解析】 试题分析:由题意得,故选C 考点:利用函数性质解不等式 (7)已知△ABC是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为( ) (A) (B) (C) (D) 【答案】B 【解析】 试题分析:设,,∴,, ,∴,故选B. 考点:向量数量积 (8)已知函数,.若在区间内没有零点,则的取值范围是( ) (A) (B) (C) (D) 【答案】D 考点:解简单三角方程 第Ⅱ卷 注意事项: 1、用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2、本卷共12小题,共计110分. 二、填空题:本大题共6小题,每小题5分,共30分. (9)i是虚数单位,复数满足,则的实部为_______. 【答案】1 【解析】 试题分析:,所以的实部为1 考点:复数概念 (10)已知函数为的导函数,则的值为__________. 【答案】3 【解析】 试题分析: 考点:导数 (11)阅读右边的程序框图,运行相应的程序,则输出的值为_______. 【答案】4 考点:循环结构流程图 (12)已知圆C的圆心在x轴的正半轴上,点在圆C上,且圆心到直线的距离为,则圆C的方程为__________. 【答案】 【解析】 试题分析:设,则,故圆C的方程为 考点:直线与圆位置关系 (13)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为__________. 【答案】 考点:相交弦定理 (14) 已知函数在R上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是_________. 【答案】 【解析】 试题分析:由函数在R上单调递减得,又方程恰有两个不相等的实数解,所以,因此的取值范围是 考点:函数综合 三、解答题:本大题共6小题,共80分. (15)(本小题满分13分) 在中,内角所对应的边分别为a,b,c,已知. (Ⅰ)求B; (Ⅱ)若,求sinC的值. 【答案】(Ⅰ)(Ⅱ) 考点:同角三角函数的基本关系、二倍角的正弦公式、两角和的正弦公式以及正弦定理 (16) (本小题满分13分) 某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示: 现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示生产甲、乙两种肥料的车皮数. (Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域; (Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润. 【答案】(Ⅰ)详见解析(Ⅱ)生产甲种肥料车皮,乙种肥料车皮时利润最大,且最大利润为万元 试题解析:(Ⅰ)解:由已知满足的数学关系式为,该二元一次不等式组所表示的区域为图1中的阴影部分.
考点:线性规划 (17) (本小题满分13分) 如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF||AB,AB=2,BC=EF=1,AE=,DE=3,∠BAD=60o,G为BC的中点. (Ⅰ)求证:FG||平面BED; (Ⅱ)求证:平面BED⊥平面AED; (Ⅲ)求直线EF与平面BED所成角的正弦值. 【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ) (Ⅱ)证明:在中,,由余弦定理可,进而可得,即,又因为平面平面平面;平面平面,所以平面.又因为平面,所以平面平面. (Ⅲ)解:因为,所以直线与平面所成角即为直线与平面所成角.过点作于点,连接,又因为平面平面,由(Ⅱ)知平面,所以直线与平面所成角即为.在中,,由余弦定理可得,所以,因此,在中,,所以直线与平面所成角的正弦值为. 考点:直线与平面平行和垂直、平面与平面垂直、直线与平面所成角 (18) (本小题满分13分) 已知是等比数列,前n项和为,且. (Ⅰ)求的通项公式; (Ⅱ)若对任意的是和的等差中项,求数列的前2n项和. 【答案】(Ⅰ)(Ⅱ) (Ⅱ)解:由题意得,即数列是首项为,公差为的等差数列. 设数列的前项和为,则 考点:等差数列、等比数列及其前项和 (19)(本小题满分14分) 设椭圆()的右焦点为,右顶点为,已知,其中 为原点,为椭圆的离心率. (Ⅰ)求椭圆的方程; (Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率. 【答案】(Ⅰ)(Ⅱ) (2)设直线的斜率为,则直线的方程为, 设,由方程组 消去, 整理得,解得或, 由题意得,从而, 由(1)知,设,有,, 考点:椭圆的标准方程和几何性质,直线方程 (20)(本小题满分14分) 设函数,,其中 (Ⅰ)求的单调区间; (Ⅱ)若存在极值点,且,其中,求证:; (Ⅲ)设,函数,求证:在区间上的最大值不小于. 【答案】(Ⅰ)递减区间为,递增区间为,.(Ⅱ)详见解析(Ⅲ)详见解析 【解析】 试题分析:(Ⅰ)先求函数的导数:,再根据导函数零点是否存在情况,分类讨论:①当时,有恒成立,所以的单调增区间为.②当时,存在三个单调区间试题解析:(1)解:由,可得,下面分两种情况讨论: ①当时,有恒成立,所以的单调增区间为. ②当时,令,解得或. 当变化时,、的变化情况如下表: 0 单调递增 极大值 单调递减 极小值 单调递增 所以的单调递减区间为,单调递增区间为,. (2)证明:因为存在极值点,所以由(1)知且. 由题意得,即, 进而, 又,且, 由题意及(1)知,存在唯一实数满足,且,因此, 所以. (3)证明:设在区间上的最大值为,表示 | ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||