http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高三数学试卷 -> 下载
试卷资源详情
资源名称 北京市朝阳区2015届高三上学期期中统一考试数学文试题
文件大小 275KB
所属分类 高三数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2015-1-25 19:25:09
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
简介:

北京市朝阳区2014-2015学年度高三年级第一学期期中统一考试数学试卷(文史类) 2014.11

(考试时间120分钟 满分150分)

本试卷分为选择题(共40分)和非选择题(共110分)两部分

第一部分(选择题 共40分)

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.

1.已知集合,则集合等于

A. B. C.  D.

2.要得到函数的图象,只要将函数的图象

A.向右平移个单位 B.向左平移个单位

C.向右平移个单位 D.向左平移个单位

3.“”是“函数在上为单调递增函数”的

A.充分不必要条件 B.必要不充分条件

C.充分必要条件 D.既不充分也不必要条件

4. 执行如图所示的程序框图,则输出的值等于

A.  B. 

C.  D. 

5. 如图,点是线段的中点,,且 ,则

A. B.

C. D.

6. 已知命题:,;命题:在曲线上存在斜率为的切线,则下列判断正确的是

A.是假命题 B.是真命题

C.是真命题 D.是真命题

7. 设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正常数).公司决定从原有员工中分流()人去进行新开发的产品B的生产.分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了.若要保证产品A的年产值不减少,则最多能分流的人数是

A.  B.  C.  D. 

8. 在平面直角坐标系中,顶点坐标分别为,, .若是钝角三角形,则正实数的取值范围是

A.  B. 

C. 或 D. 或

第二部分(非选择题 共110分)

二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.

9.已知平面向量,,若,则 .

10.已知 ,,则_______; _______.

11.已知函数,且对于任意的,有,则实数的值为 .

12.已知,满足条件则函数的最大值是 .

13. 设函数若,则实数的值等于 .

14.已知函数的图象与直线有且只有一个交点,则实数的取值范围是 .

三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.

15. (本小题满分13分)

已知数列是等差数列,且.

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列是首项为2,公比为2的等比数列,求数列的前项和.

16. (本小题满分13分)

已知函数.

(Ⅰ)求的最小正周期;

(Ⅱ)求在上的最大值与最小值.

17. (本小题满分14分)

如图,在△中,为钝角,.为延长线上一点,且.

(Ⅰ)求的大小;

(Ⅱ)求的长.

18. (本小题满分13分)

已知函数,.

(Ⅰ)若,试求函数()的最小值;

(Ⅱ)对于任意的,不等式成立,试求的取值范围.

19. (本小题满分14分)

已知数列与满足,.

(Ⅰ)若,求,;

(Ⅱ)若,求证:;

(Ⅲ)若,求数列的通项公式.

20. (本小题满分13分)

已知函数,.

(Ⅰ)若,对于任意的,求证:;

(Ⅱ)若函数在其定义域内不是单调函数,求实数的取值范围.

北京市朝阳区2014-2015学年度高三年级第一学期期中统一考试

数学答案(文史类) 2014.11

一、选择题:(满分40分)

题号

1

2

3

4

5

6

7

8



答案

B

D

A

B

C

C

B

D



二、填空题:(满分30分)

题号

9

10

11

12

13

14



答案

 





 

 4

或





(注:两空的填空,第一空3分,第二空2分)

三、解答题:(满分80分)

15. (本小题满分13分)

解:(Ⅰ)由整理得

解得

所以.…………………………………………………………………6分

(Ⅱ)因为数列是首项为2,公比为2的等比数列,

所以,所以,

所以数列的前项和.

…………………………………………………………………………………13分

16. (本小题满分13分)

解:(Ⅰ)







.

则的最小正周期为. ………………………………………………………………7分

(Ⅱ)因为,则.

所以.

所以.

则在上的最大值为,此时,即.

在上的最小值为,此时,即.

…………………………………………………………………………………13分

17. (本小题满分14分)

解:(Ⅰ)在△ 中,

因为,,

由正弦定理可得,

即,

所以.

因为为钝角,所以.

所以. ………………………………………………………………7分

(Ⅱ)在△ 中,由余弦定理可知,

即,

整理得.

在△ 中,由余弦定理可知,

即,

整理得.解得.

因为为钝角,所以.所以.

……………………………………………………………………………………14分

18. (本小题满分13分)

解:(Ⅰ)依题意得.

因为,所以,当且仅当时,即时,等号成立.

所以.

所以当时,的最小值为.………………………………………6分

(Ⅱ)因为,所以要使得“,不等式成立”只要“在恒成立”.

不妨设,则只要在恒成立.

因为,

所以即解得.

所以的取值范围是. ………………………………………………………13分

19(本小题满分14分)

解:(Ⅰ)当时,有,所以.

当时,有.

因为,所以. ………………3分

(Ⅱ)因为,所以.

所以.

所以. ………………8分

(Ⅲ)由已知得 …①

当时, …②

①-②得,,

即.

因为,所以=().

当时,,又=,符合上式.

所以= (). ………………14分

20. (本小题满分13分)

解:(Ⅰ) 当时,,.

令,解得.

当时,,所以函数在是减函数;

当时,,所以函数在为增函数.

所以函数在处取得最小值,.

因为,,所以对任意,都有.

即对任意,. ………………………………………6分

(Ⅱ)函数的定义域为.

又,设.

令,即,设函数.

令,则.

当时,,所以在上是减函数;

当时,,所以在上是增函数;

所以.则时,.

于是,当时,直线与函数的图象有公共点,

即函数至少有一个零点,也就是方程至少有一个实数根.

当时,

::立即下载::
进入下载页面
下载出错
相关资源:
·北京市40所示范校2015届高三12月联考基础能力测试一数学理试题
·北京市40所示范校2015届高三12月联考基础能力测试一数学文试题
·北京东城区2015届高三上学期期末考试 数学理
·于都中学2014-2015学年高三上学期理科零班限时训练十四
·于都中学2014-2015学年高三上学期理科零班限时训练十二
·于都中学2014-2015学年高三上学期理科零班限时训练十三
·于都中学2014-2015学年高三上学期理科零班限时训练十一
·于都中学2014-2015学年高三上学期理科零班限时训练十
·上海理工大学附属中学2015届高三11月基础测试数学理试题
·上海理工大学附属中学2015届高三11月基础测试数学文试题  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号