设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| 简介:
2013-2014学年度屯溪一中高三期中考试数学试题 (理 科) 第Ⅰ卷 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设是周期为的偶函数,当时, ,则( )
2.下列区间中,函数在其上为增函数的是( )
3.设、都是锐角,且,,则等于( ) 或 或 4.已知定义在上的奇函数和偶函数满足,若,则( )
5.设函数的最小正周期为,且,则( ) 在单调递减; 在单调递减; 在单调递增; 在单调递增; 6.在中,若,,,则( )
7.设集合,,满足且的集合的个数是( )
8.已知的面积为,,,则的周长为( )
9.已知所在的平面内一点满足,则 ( )
10.设、为整数,方程在区间内有两个不同的实根,则 的 最小值为( )
第Ⅱ卷 二、填空题:本大题共5小题,每小题5分,共25分。 11.已知,则的值为 。 12.已知向量,,,若与共线,则 13.已知点、、在所在的平面内,且,,,则点、、依次是的 、 、 。 14.在直角坐标系中,曲线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,曲线的方程为,则两曲线交点之间的距离为 。 15.下列几个结论: ①“”是“”的充分不必要条件; ② ③已知,,,则的最小值为; ④若点在函数的图象上,则的值为; ⑤函数的对称中心为 其中正确的是 (写出所有正确命题的序号) 三、解答题:解答应写出文字说明,证明过程或演算步骤,本大题75分. 16.(本小题12分)已知函数。 ⑴求的值; ⑵求的最大值和最小值,并求当取何值时,取得最大值。 [来源:Z#xx#k.Com] [来源:学_科_网Z_X_X_K] 17.(本小题12分)在中,角、、的对边分别为、、,。 ⑴求角的值; ⑵若,,求的面积。 18. (本小题12分)如图,在四面体中,,,,且。 ⑴设是的中点,在上且,证明:; ⑵求二面角的平面角的余弦值。 19. (本小题12分)设的导数满足,,其中常数、。 ⑴求曲线在点处的切线方程; ⑵设,求函数的极值。 20. (本小题13分)设,满足。 ⑴求函数的最小正周期和单调递减区间; ⑵若,求的最大值和最小值。 21. (本小题14分)已知函数,。 ⑴讨论函数的单调性; ⑵如果存在、,使得成立,求满足上述条件的最大整数; ⑶如果对任意、,都有成立,求实数的取值范围。[来源:Zxxk.Com] 屯溪一中2013-2014学年度高三第一学期期中考试 数学(理科)参考答案 一.选择题:(本大题共个小题,每小题分,共分) 题号 1 2 3 4 5 6 7 8 9 10 答案 B D B B A C C C B D 二.填空题:(本大题共个小题,每小题分,共分) 11. 12. 13.外心、重心、垂心 14. 15。②③④ 三.解答题:(本大题共个小题,共 分。要求写出必要的文字说明、演算步骤和解题过程 。注意:请在指定区域内答题!) 16.(本小题满分12分) 解:⑴ ⑵[来源:学&科&网]
的最大值是;最小值是。 且当时,取得最大值。 17.(本小题12分) 解:⑴
。 ⑵由
。 18. (本小题12分) ⑴证明:过点在平面内作,分别以、、为轴、轴、轴建立空间直角坐标系。则,,,,, 则设,由则, ,即。 ⑵依题意有:面的法向量为。 , 设面的法向量为 由 即 由于二面角的平面角是锐角,所以二面角的平面角的余弦值为。 19. (本小题12分) 解: 又
所以,。 , 即 ⑵ [来源:学科网ZXXK] 在上单调递减,在上单调递增,在上单调递减, 所以,。 20. (本小题13分) 解:⑴
由即
。
函数的最小正周期为, 函数的单调递减区间为。 ⑵由于,所以 即
的最大值为,最小值为。 21. (本小题14分) 解:⑴ | ||||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||