http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高二数学试卷 -> 下载
试卷资源详情
资源名称 江西省南昌三中2013-2014学年高二上学期期中考试数学文试题
文件大小 312KB
所属分类 高二数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2013-12-10 19:40:24
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
::立即下载::
进入下载页面
下载出错
简介:



命题:陈学昇 审题:张金生

一、选择题(本大题共10小题,每小题5分,共50分)

1.椭圆的焦距为( )

A.10 B.5 C. D.

2.已知两条直线和互相平行,则等于( )

A.1或-3 B.-1或3 C.1或3 D.-1或-3

3.抛物线y=2x2的准线方程为 (  )

A.y=-   B.y=- C.y=- D.y=-1

4.在平面直角坐标系中,直线与圆相交于A、B两点,则弦AB的长等于

A. B. C. D.1

5. 两直线-=1与-=1的图像可能是图中的哪一个 (  )



6.已知双曲线的两个焦点F1(-,0),F2(,0),M是此双曲线上的一点,且·=0,||·||=2,则该双曲线的方程是 (  )

A. -=1 B.x2-=1 C. -y2=1 D.-=1

7. 已知的周长是16,,B, 则动点C的轨迹方程是( )[来源:Z_xx_k.Com]

A. B. C. D.

8.已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是( ) (  )

A.2 B.6 C.3 D.2

9.已知抛物线方程为,直线的方程为,在抛物线上有一动点P,

P到y轴的距离为,P到直线的距离为,则的最小值为( )

A. B. C. D.

10.已知AB为半圆的直径,P为半圆上一点,以A、B为焦点且过点P做椭圆,当点P在半圆上移动时,椭圆的离心率有(  )

A.最大值 B.最小值 C.最大值 D.最小值

二、填空题(本大题共5小题,每小题5分,共25分)

11.若方程表示双曲线,则k的取值范围是_________.

12.过点(1,2)总可作两条直线与圆相切,则实数的取值范围是 .

13.若椭圆+=1过抛物线y2=8x的焦点,且与双曲线x2-y2=1有相同的焦点,则该椭圆的方程是________.

14.已知x,y满足条件(k为常数),若z=x+3y的最大值为8,则k=________.

15.若椭圆+=1的焦点在x轴上,过点(1,)作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.

三、解答题(本大题共6小题,共75分)

16.(本小题满分12分)直线l1过点A(0,1),l2过点B(5,0),如果l1∥l2,且l1与l2的距离为5,求l1、l2的方程.

17. (本小题满分12分)圆经过点A(2,-3)和B(-2,-5).  (1)若圆的面积最小,求圆的方程;(2)若圆心在直线x-2y-3=0上,求圆的方程.

18.(本小题满分12分)已知圆C经过点A(-2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.(1)求圆C的方程;(2)若·=-2,求实数k的值;

[来源:学#科#网]

19.(本小题满分12分)已知抛物线C的顶点在原点,焦点F在x轴的正半轴上,设A、B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的垂直平分线恒经过定点Q(6,0),求此抛物线的方程.

20.(本小题满分13分)已知椭圆C的中心在原点,一个焦点为F(-2,0),且长轴长与短轴长的比是2∶.(1)求椭圆C的方程;(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当||最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

21. (本小题满分14分)如图所示,已知椭圆和抛物线有公共焦点,的中心和 的顶点都在坐标原点,过点的直线与抛物线分别相交于两点

(Ⅰ)写出抛物线的标准方程;(Ⅱ)若,求直线的方程;

(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值。 

南昌三中2011-2012学年度上学期期中考试

高二数学(文)答卷

一、选择题(每小题5分,共50分)

题号

1

2

3[来源:学科网]

4

5

6

7

8

9

10



答案























二、填空题(每小题5分,共25分)

11、 . 12、 .

13、 . 14、 _.

15、_______________.

三、解答题(本大题共6小题,共75分)

16.(本小题满分12分)直线l1过点A(0,1),l2过点B(5,0),如果l1∥l2,且l1与l2的距离为5,求l1、l2的方程.

[来源:Zxxk.Com]

17. (本小题满分12分)圆经过点A(2,-3)和B(-2,-5). (1)若圆的面积最小,求圆的方程;(2)若圆心在直线x-2y-3=0上,求圆的方程.

18.(本小题满分12分)已知圆C经过点A(-2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.(1)求圆C的方程;(2)若·=-2,求实数k的值;

19.(本小题满分12分)已知抛物线C的顶点在原点,焦点F在x轴的正半轴上,设A、B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的垂直平分线恒经过定点Q(6,0),求此抛物线的方程.

20.(本小题满分13分)已知椭圆C的中心在原点,一个焦点为F(-2,0),且长轴长与短轴长的比是2∶.(1)求椭圆C的方程;(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当||最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

21. (本小题满分14分)如图所示,已知椭圆和抛物线有公共焦点,的中心和 的顶点都在坐标原点,过点的直线与抛物线分别相交于两点

(Ⅰ)写出抛物线的标准方程;(Ⅱ)若,求直线的方程;

(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值。

的斜截式方程为,因为两直线平行,所以且,解得或,选A.

3.抛物线y=2x2的准线方程为 (  )[来源:学#科#网]

A.y=-   B.y=- C.y=- D.y=-1

答案 A解析 由y=2x2,得x2=y,故抛物线y=2x2的准线方程为y=-,选A.

5. 两直线-=1与-=1的图像可能是图中的哪一个 (  )

答案 B

6.已知双曲线的两个焦点F1(-,0),F2(,0),M是此双曲线上的一点,且·=0,||·||=2,则该双曲线的方程是 (  )

A. -=1 B.x2-=1 C. -y2=1 D.-=1

答案 C解析 ∵·=0,∴⊥.

∵|||-|||=2a,∴||2+||2=40.

∴||·||=20-2a2=2,∴a2=9,b2=1.

∴所求双曲线的方程为-y2=1.

【答案】D 【解析】因为抛物线的方程为,所以焦点坐标,准线方程为。因为点到轴的距离为,所以到准线的距离为,又,所以,焦点到直线的距离,而,所以,选D.

10文科.已知AB为半圆的直径,P为半圆上一点,以A、B为焦点且过点P做椭圆,当点P在半圆上移动时,椭圆的离心率有(  )

A.最大值 B.最小值  C.最大值 D.最小值

答案 D解析 椭圆的离心率e=

≥=,故选D.

二、填空题(本大题共5小题,每小题5分,共25分)

11.若方程表示双曲线,则k的取值范围是k <-2或k >5

12.过点(1,2)总可作两条直线与圆相切,则实数的取值范围是 . 或;

【答案】 +=1【解析】 显然x=1是一条切线,且过切点A(1,0),设另一条切线方程为y-=k(x-1),即2kx-2y+1-2k=0.由=1,解得k=-.∴圆的切线方程为3x+4y-5=0.

解得B(,).进一步求得过A(1,0)与B(,)两点的直线方程为y=-2x+2.令x=0,得y=2.故在椭圆方程+=1中,b=2,c=1,∴a2=5.因此椭圆方程为+=1.

三、解答题(本大题共6小题,共75分)

16.(本小题满分12分)直线l1过点A(0,1),l2过点B(5,0),如果l1∥l2,且l1与l2的距离为5,求l1、l2的方程.

答案 或

解析 若l1,l2的斜率都存在时,设直线的斜率为k,

由斜截式得l1的方程y=kx+1,即kx-y+1=0.

由点斜式可得l2的方程y=k(x-5),即kx-y-5k=0.

在直线l1上取点A(0,1),则点A到直线l2的距离

d==5,∴25k2+10k+1=25k2+25,∴k=.

∴l1:12x-5y+5=0,l2:12x-5y-60=0.

若l1、l2的斜率不存在,

则l1的方程为x=0,l2的方程为x=5,它们之间的距离为5.同样满足条件.

则满足条件的直线方程有以下两组:

或

19.(本小题满分12分)已知抛物线C的顶点在原点,焦点F在x轴的正半轴上,设A、B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的垂直平分线恒经过定点Q(6,0),求此抛物线的方程.

答案 y2=8x

解析 设抛物线的方程为y2=2px(p>0),其准线方程为x=-.

设A(x1,y1),B(x2,y2),因为|AF|+|BF|=8,所以x1++x2+=8,

即x1+x2=8-p.

因为Q(6,0)在线段AB的中垂线上,所以QA=QB,

即(x1-6)2+y=(x2-6)2+y.又y=2px1,y=2px2,

所以(x1-x2)(x1+x2-12+2p)=0.因为x1≠x2,所以x1+x2=12-2p.

故8-p=12-2p.所以p=4.所以所求抛物线方程是y2=8x.

20.(本小题满分13分)已知椭圆C的中心在原点,一个焦点为F(-2,0),且长轴长与短轴长的比是2∶.(1)求椭圆C的方程;(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当||最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

答案 (1)+=1 (2)1≤m≤4解析 (1)由题意知解之得

∴椭圆方程为+=1.

(2)设P(x0,y0),且+=1,

∴||2=(x0-m)2+y=x-2mx0+m2+12(1-)

=x-2mx0+m2+12=(x0-4m)2-3m2+12.

∴||2为关于x0的二次函数,开口向上,对称轴为4m.由题意知,当x0=4 m时,||2最小,∴4m≥4,∴m≥1.又点M(m,0)在椭圆长轴上,∴1≤m≤4.



或

或 或

(3)  椭圆设为

? 消元整理 ?

综上,存在两点M符合条件,坐标为.…13分

相关资源:
·江苏省邗江中学2013-2014学年高二上学期期中考试数学试题
·江苏省扬州中学2013-2014学年高二上学期期中考试数学试题
·江苏省徐州市2013-2014学年高二上学期期中考试数学理试题
·江苏省徐州市2013-2014学年高二上学期期中考试数学文试题
·江苏省宿迁市2013-2014学年高二上学期期中考试数学试题
·江苏省启东中学2013-2014学年高二上学期期中考试数学理试题
·江苏省启东中学2013-2014学年高二上学期期中考试数学文试题
·山东省淄博市临淄中学2013-2014学年高二上学期期中考试数学试题
·山东省济宁市金乡一中2013-2014学年高二上学期期中考试数学理试题
·山东省济宁市金乡一中2013-2014学年高二上学期期中考试数学文试题  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号