http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高三数学试卷 -> 下载
试卷资源详情
资源名称 2016年普通高等学校招生全国统一考试数学文试题(全国卷2,含解析)
文件大小 2.1MB
所属分类 高三数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2016/8/5 10:34:25
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
简介:

2016年普通高等学校招生全国统一考试试题

文科数学

一、 选择题:本大题共12小题。每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。

1. 已知集合,则

(A) (B) (C) (D)

【答案】D

【解析】由得,,所以,所以,故选D.

2. 设复数z满足,则 =

(A) (B) (C) (D)

【答案】C

【解析】由得,,故选C.

3. 函数 的部分图像如图所示,则

(A)

(B)

(C)

(D)



【答案】A



4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为

(A) (B) (C) (D)

【答案】A

【解析】因为正方体的体积为8,所以正方体的体对角线长为,所以正方体的外接球的半径为,所以球面的表面积为,故选A.

5. 设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=

(A) (B)1 (C) (D)2

【答案】D

【解析】,又因为曲线与交于点,轴,所以,所以,选D.

6. 圆x2+y2?2x?8y+13=0的圆心到直线ax+y?1=0的距离为1,则a=

(A)? (B)? (C) (D)2

【答案】A

【解析】圆心为,半径,所以,解得,故选A.

7. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为



(A)20π (B)24π (C)28π (D)32π

【答案】C

【解析】因为原几何体由同底面一个圆柱和一个圆锥构成,所以其表面积为,故选C.

8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯 ,则至少需要等待15秒才出现绿灯的概率为

(A) (B) (C) (D)

【答案】B

【解析】至少需要等待15秒才出现绿灯的概率为,故选B.

9. 中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a为2,2,5,则输出的s=

(A)7

(B)12

(C)17

(D)34



【答案】C

【解析】第一次运算,a=2,s=2,n=2,k=1,不满足k>n;

第二次运算,a=2,s=,k=2,不满足k>n;

第三次运算,a=5,s=,k=3,满足k>n,

输出s=17,故选C.

10. 下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是

(A)y=x (B)y=lgx (C)y=2x (D)

【答案】D

【解析】,定义域与值域均为,只有D满足,故选D.

11. 函数的最大值为

(A)4 (B)5 (C)6 (D)7

【答案】B

【解析】因为,而,所以当时,取最大值5,选B.

12. 已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数 y=|x2-2x-3| 与 y=f(x) 图像的交点为(x1,y1),(x2,y2),…,(xm,ym),则

(A)0 (B)m (C) 2m (D) 4m

【答案】B

【解析】因为都关于对称,所以它们交点也关于对称,当为偶数时,其和为,当为奇数时,其和为,因此选B.

二.填空题:共4小题,每小题5分.

13. 已知向量a=(m,4),b=(3,-2),且a∥b,则m=___________.

【答案】

【解析】因为a∥b,所以,解得.

14. 若x,y满足约束条件 ,则z=x-2y的最小值为__________.

【答案】

 15. △ABC的内角A,B,C的对边分别为a,b,c,若,,a=1,则b=____________.

【答案】

【解析】因为,且为三角形内角,所以,,又因为,所以.

16. 有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.

【答案】和

【解析】由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2.

三、解答题:解答应写出文字说明,证明过程或演算步骤.

17.(本小题满分12分)

等差数列{}中,

(I)求{}的通项公式;

(II)设=[],求数列{}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2

【试题分析】(I)先设的首项和公差,再利用已知条件可得和,进而可得的通项公式;(II)根据的通项公式的特点,采用分组求和法,即可得数列的前项和.



18. (本小题满分12分)

某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:



随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:



(I)记A为事件:“一续保人本年度的保费不高于基本保费”。求P(A)的估计值;

(II)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;

(III)求续保人本年度的平均保费估计值.

【试题分析】(I)由已知可得续保人本年度的保费不高于基本保费的频数,进而可得的估计值;(II)由已知可得续保人本年度的保费高于基本保费但不高于基本保费的160%的频数,进而可得的估计值;(III)计算出险次数的频率,进而可得续保人本年度的平均保费估计值.



19.(本小题满分12分)

如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将沿EF折到的位置.

(I)证明:;

(II)若,求五棱锥体积.



【试题分析】(I)先证,,再证平面,即可证;(II)先证,进而可证平面,再计算菱形和的面积,进而可得五棱锥的体积.



20.(本小题满分12分)

已知函数.

(I)当时,求曲线在处的切线方程;

(II)若当时,,求的取值范围.

 

21.(本小题满分12分)

已知A是椭圆E:的左顶点,斜率为的直线交E与A,M两点,点N在E上,.

(I)当时,求的面积

(II) 当时,证明:.

【试题分析】(I)设点的坐标,由已知条件可得点的坐标,进而可得的面积.



请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.

22.(本小题满分10分)选修4-1:几何证明选讲

如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.

(Ⅰ)证明:B,C,G,F四点共圆;

(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.



【试题分析】(I)先证,再证,进而可证,,,四点共圆;(II)先证,再计算的面积,进而可得四边形BCGF的面积.

解析:(I)在正方形中,,所以

因为,所以,所以



所以

所以

23.(本小题满分10分)选修4-4:坐标系与参数方程

在直角坐标系xOy中,圆C的方程为.

(Ⅰ)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求C的极坐标方程;

(Ⅱ)直线l的参数方程是(t为参数),l与C交于A,B两点,,求l的斜率.

【试题分析】(I)利用,可得C的极坐标方程;(II)先将直线的参数方程化为普通方程,再利用弦长公式可得的斜率.

解析:(I)由得

,



故的极坐标方程为

(II)由(为参数)得,即

圆心,半径

圆心到直线的距离

即,解得,所以的斜率为.

24.(本小题满分10分)选修4-5:不等式选讲

已知函数,M为不等式的解集.

(Ⅰ)求M;

(Ⅱ)证明:当a,b时,.

当时,,所以

当时,,解得,所以

所以

(II)

,

,

,



即

通达教学资源网 http://www.nyq.cn/

::立即下载::
进入下载页面
下载出错
相关资源:
·2016年普通高等学校招生全国统一考试数学文试题(全国卷1,缺答案)
·2016年普通高等学校招生全国统一考试数学文试题(全国卷1,含解析)
·2016年云南省蒙自市一中考前最后一练理科数学(副题)
·2016年云南省蒙自市一中考前最后一练理科数学
·2016届《衡水金卷》高考文科数学二轮复习作业卷(打包40套)
·2016全国I卷高考文科数学热身训练一
·2016上海高三数学二模试卷(全部12份)
·2015-2016宜丰中学高三(20)班数学选修4-5训练题
·2015-2016宜丰中学高三(20)班数学选修4-4训练题
·2015-2016宜丰中学高三(20)班数学选修4-1训练题  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号