设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| 简介:
金丽衢十二校2014-2015学年第一次联合考试 数学试卷(理科) 命题人:永康一中 审题: 浦江中学 本试卷分第Ⅰ卷和第Ⅱ卷两部分.考试时间120分钟. 试卷总分为150分.请考生将所有试题的答案涂、写在答题纸上. 第Ⅰ卷 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.已知集合,,且,则实数的取值范围是 A. B. C. D. 2.已知,下列命题正确的是 A.若, 则 B.若,则 C.若,则 D.若,则 3. 已知为等比数列,则“”是“为递减数列”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 4.设为空间两条不同的直线,为空间两个不同的平面,给出下列命题: ①若,则; ②若,则; ③若则; ④若,则. 其中的正确命题序号是 A.③④ B.②④ C.①② D. ①③ 5. 已知为数列的前项和,且满足,,,则 A. B. C. D. 6.函数()的图像关于点对称,则的增区间 A. B. C. D. 7. 已知有两个不同的零点,则的取值范围是 A. B. C. D. 8. 长方体的底面是边长为的正方形,若在侧棱上至少存在一点,使得,则侧棱的长的最小值为 A. B. C. D. 9.已知分别为双曲线的左右焦点,如果双曲线右支上存在一点,使得关于直线的对称点恰在轴上,则该双曲线的离心率的取值范围为 A. B. C. D. 10.设实数满足若的最大值和最小值分别为,则的值为 A. B. C. D. 第Ⅱ卷 二、填空题:本大题有7小题,每小题4分,共28分.把答案填在答题卷的相应位置. 11.设满足约束条件,则目标函数的最小值为 . 12.已知则 . 13. 设直线与圆相交于点,两点,为坐标原点,且,则实数的值为 . 14.某几何体的三视图(单位:cm)如图所示,则此几何体的体积为 . 15.已知 若,则 . 16.已知是边长为的正三角形,为 的外接圆的一条直径,为的 边上的动点,则的最大值为 . 17. 点为椭圆在第一象限的弧上任意一点,过引轴,轴的平行线,分别交直线于,交轴,轴于两点,记与的面积分别为,当时,的最小值为 . 三.解答题:本大题共5小题,满分72分.解答应写出文字说明,证明过程或演算步骤. 18.(本题满分14分) 在△ABC中,内角A,B,C所对的边分别是a,b,c, 已知△ABC的面积. (Ⅰ)求与的值; (Ⅱ)设,若,求的值. 19.(本题满分14分) 设数列的前项的和为,且是等差数列,已知. (Ⅰ)求的通项公式; (Ⅱ)当时,恒成立,求的取值范围. 20. (本题满分14分) 如图,四边形为菱形,为平行四边形,且面面,,设与相交于点,为的中点. (Ⅰ)证明: 面; (Ⅱ)若与面所成的角为,求二面角的平面角余弦值的大小. 第21题图 21.(本题满分15分)已知抛物线的焦点到准线的距离为2. (Ⅰ)求的值; (Ⅱ)如图所示,直线与抛物线相交于,两点,为抛物线上异于,的一点,且轴,过作的垂线,垂足为,过作直线交直线于点,设的斜率分别为,且. (ⅰ)线段的长是否为定值?若是定值,请求出定值;若不是定值,请说明理由; (ⅱ)求证:四点共圆. 22. (本题满分15分)已知二次函数为偶函数,,.关于的方程有且仅有一根. (Ⅰ)求的值; (Ⅱ)若对任意的,恒成立, 求实数的取值范围; (Ⅲ)令,若存在使得,求实数的取值范围. 金丽衢十二校2014-2015学年第一次联合考试 数学试卷(理科)参考答案 一、选择题(5×10=50分) 题号 1 2 3 4 5 6 7 8 9 10 答案 C D C B A D C B B D 二、填空题(4×7=28分) 11. 1 12. 13. 14. 15. 16. 17. 三.解答题(72分) 18解: (Ⅰ)由题意可得: 所以 又因为 解方程组可得: -----------------------------7分 (Ⅱ)易得 所以.-----------------------------7分 19. 解: (Ⅰ)由题意可得,, 当时也成立, -----------------------------6分 (Ⅱ) -----------------------------10分 解法一: 设 当时, 当时, 的最小值为,. -----------------------------14分 解法二: 设 则= (当,即时取最小值) 20.(Ⅰ) 证明:四边形为菱形 又面面 即 又为的中点, 又 面 ——————————5分 (Ⅱ) 过作的垂线,垂足为,连接 易证得为与面所成的角,= 为二面角的平面角 所以由余弦定理可得:. 21.解: (Ⅰ) ——————————4分 (Ⅱ)设,则,直线的方程为: 由消元整理可得: 所以 可求得: ——————6分 直线的方程为: 所以可求得 所以===4.——————9分 的中点 则的中垂线方程为: 与BC的中垂线轴交点为: 所以的外接圆的方程为: ——————12分 由上可知
所以四点共圆.————————————15分 解法二:易知的外接圆圆心在轴上 作关于的对称点,则为直径, 易知横坐标为 | ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||