设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| 简介:
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求. 1.已知集合,,则( ) A. B. C. D. 2.若关于的不等式的解集是,则实数等于( ) A.-1 B.-2 C.1 D.2 3.若对任意的实数,直线恒经过定点M,则M的坐标是 ( ) A.(1,2) B.(1,-2) C.(-1,2) D.(-1,-2) 4.若,则“成等比数列”是“”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 5.已知两条直线,两个平面.给出下面四个命题: ①; ②; ③; ④. 其中正确的命题序号为( ) A.①② B.②③ C.①④ D.②④ 6.已知的图象与的图象的两相邻交点间的距离为,要得到的图象,只需把的图象 ( ) A.向左平移个单位 B.向右平移个单位 C.向左平移个单位 D.向右平移个单位 7.设点分别在直线和上运动,线段的中点恒在圆内,则点的横坐标的取值范围为( ) A. B. C. D. 8.已知函数在上为偶函数,当时,,若,则实数的取值范围是( ) A. B. C . D. 9.已知双曲线的左、右焦点分别是,正三角形的一边与双曲线左支交于点,且,则双曲线的离心率是( ) A. B. C. D. 10.在平面上给定边长为的正,动点满足,且,则点的轨迹是( ) A.线段 B.圆 C.椭圆 D.双曲线 二、填空题:本大题共7小题,每小题3分,共21分. 11.设函数,则的值为 ▲ . 12.已知实数满足,则的最小值为 ▲ . 13.已知某几何体的三视图如图所示,则该几何体的体积为 ▲ . 14.在数列中,, (),则该数列的前2014项的和是 ▲ . 15.若实数满足:,则的最小值是 ▲ . 16.已知为椭圆的左焦点,直线与椭圆交于两点,那么= ▲ . 17.正四面体ABCD的棱长为1,其中线段平面,E,F分别是线段AD和BC的中点,当正四面体绕以AB为轴旋转时,线段EF在平面上的射影长的范围是 ▲ . 台州中学2013学年第二学期第二次统练答题卷 高二 数学(文科) 一、选择题:本大题共10小题,每小题3分,共30分. 题号 1 2 3 4 5 6 7 8 9 10 答案 二、填空题:本大题共7小题,每小题3分,共21分. 11、___________ 12、___________ 13、____________ 14、___________ 15、__________ 16、___________ 17、____________ 三、解答题:本大题共5小题,共49分,解答应写出文字说明、证明过程或演算步骤. 18.(本题满分9分)设的三内角所对的边长分别为,且,A=,. (1)求三角形ABC的面积; (2)求的值. 19.(本题满分10分)已知等差数列的前项和为,等比数列的各项均为正数,公比为,且满足:. (1)求与; (2)设,若满足:对任意的恒成立,求的取值范围. 20.(本题满分10分)如图,四棱锥的底面ABCD是平行四边形,,, 面,且,若为中点,点在线段上且. (1)求证:// 平面; (2)求与平面所成角的正弦值. 21.(本题满分10分)已知函数, . (1)求函数的表达式及值域; (2)若函数与的图象关于直线对称,问是否存在实数,使得命题和满足复合命题且为真命题?若存在,求出实数的取值范围;若不存在,说明理由. 22.(本题满分10分)已知圆抛物线的焦点为 (1)若为圆上任意一点,求的最小值及相应点的坐标; (2)求证:在抛物线上有且仅存在一个横坐标和纵坐标均为整数的点,使过点且与圆相切的直线,分别交抛物线的准线于点,且,并求出点的坐标.
| ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||