设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| 简介:
2015届广东六校联盟第一次联考试题 数学(理科) (满分150分) 考试时间:120分钟 一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N=( ) A.(0,4] B.[0,4) C.[-1,0) D.(-1,0] 2.设i是虚数单位,表示复数z的共轭复数.若z=1+i,则 +i·=( ) A.-2 B.-2i C.2 D.2i 3. 已知实数满足,则目标函数的最小值为( ) A. 5 B. 6 C. 7 D. -2 4. 若双曲线的离心率是,则实数的值是 ( ) A. B. C. D. 5. 已知平行四边形ABCD中,AC为一条对角线,若( ) A. B. C.6 D.8 6. 已知某企业上半年前5个月产品广告投入与利润额统计如下: 月份 1 2 3 4 5 广告投入(x万元) 9.5 9.3 9.1 8.9 9.7 利润(y万元) 92 89 89 87 93 由此所得回归方程为,若6月份广告投入10(万元)估计所获利润为( ) A.95.25万元 B.96.5万元 C.97万元 D.97.25万元 7.如图:正方体的棱长为,分别是棱的 中点,点是的动点,,过点、直线的平面将正方体分 成上下两部分,记下面那部分的体积为,则函数的大致图像是( ) 8.以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sin x时,φ1(x)∈A,φ2(x)∈B.现有如下命题: ①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“?b∈R,?a∈D,f(a)=b”; ②函数f(x)∈B的充要条件是f(x)有最大值和最小值; ③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)?B; ④若函数f(x)=aln(x+2)+(x>-2,a∈R)有最大值,则f(x)∈B; ⑤若函数f(x),则. 其中的真命题有( ) A.①③④⑤ B.②③④⑤ C.①③⑤ D.①③④ 二 填空题(本大题共6小题,每小题5分,共30分) (一)必做题(9~13题) 9. 若不等式,对任意的恒成立,则实数a的取值范围是_ _. 10. 已知函数f(x)=ln(1+x)-ax的图象在x=1处的切线与直线x+2y-1=0平行,则实数a的值为___. 11. 已知数组()是1,2,3,4,5五个数的一个排列,如数组(1,4,3,5,2)是符合题意的一个排列。规定每一个排列只对应一个数组,且在每个数组中有且仅有一个i使,则所有不同的数组中的各数字之和为________. 12. 在△ABC中,a,b,c分别是角A,B,C的对边,且若,, 则a的值为 . 13. 实数项等比数列的前项的和为,若, 则公比等于________- (二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知曲线C的极坐标方程为:,直线的极坐标方程为:.则它们相交所得弦长等于 . 15. (几何证明选讲选做题) 已知圆的半径为,从圆外一点 引 切线和割线,圆心到的距离为,,则切线 的长为____________. 三、解答题(本大题共六个小题,共80分.解答应写出文字说明、证明过程和演算步骤) 16.(本小题满分12分) 已知函数f(x)=cos x·sin-cos2x+,x∈R. (1)求f(x)的最小正周期; (2)求f(x)在闭区间上的最大值和最小值. 17. (本小题满分12分) 广东某六所名校联盟办学,他们不但注重学生的学习成绩的提高,更重视学生的综合素质的提高;六校从各校中抽出部分学生组成甲、乙、丙、丁 4个小组进行综合素质过关测试, 设4个小组中:甲、乙、丙、丁组在测试中能够过关的概率分别为0.6,0.5,0.5,0.4,各组是否过关是相互独立的. (1)求测试中至少3个小组过关的概率; (2)X表示测试中能够过关的组数,求X的数学期望. 18.(本小题满分14分)如图,在三棱锥中,面, , 且,为的中点,在上,且. (1)求证:; (2)求平面与平面的夹角的余弦值. 19. (本小题满分14分)已知数列中,,前项的和是满足:都有:,其中数列是公差为1的等差数列; (Ⅰ)求数列的通项公式; (Ⅱ)设,求 . 20.(本小题满分14分)已知椭圆的离心率为, 以原点为圆心、椭圆的短半轴长为半径的圆与直线相切. (Ⅰ)求椭圆的方程; (Ⅱ)设,过点作与轴不重合的直线交椭圆于、两点,连结、分别交直线于、两点.试问直线、的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由. 21.(本小题满分14分) 定义在R上的函数及二次函数满足: 且. (I)求和的解析式; (II); (III)设,讨论方程的解的个数情况. 参考答案 1. B 2.C 3. D 4. D 5. D 6. A 7.C 8.D 8提示:若f(x)∈A,则f(x)的值域为R,于是,对任意的b∈R,一定存在a∈D,使得f(a)=b,故①正确. 取函数f(x)=x(-1<x<1),其值域为(-1,1),于是,存在M=1,使得f(x)的值域包含于[-M,M]=[-1,1],但此时f(x)没有最大值和最小值,故②错误. 当f(x)∈A时,由①可知,对任意的b∈R,存在a∈D,使得f(a)=b,所以,当g(x)∈B时,对于函数f(x)+g(x),如果存在一个正数M,使得f(x)+g(x)的值域包含于[-M,M],那么对于该区间外的某一个b0∈R,一定存在一个a0∈D,使得f(a0)=b-g(a0),即f(a0)+g(a0)=b0?[-M,M],故③正确. 对于f(x)=aln(x+2)+ (x>-2),当a>0或a<0时,函数f(x)都没有最大值.要使得函数f(x)有最大值,只有a=0,此时f(x)= (x>-2).易知f(x)∈,所以存在正数M=,使得f(x)∈[-M,M],故④正确. 若f(x)值域是R,则的值要取遍所有的正实数,从而故⑤错误 9. 10. 1 11. 675 12. 1或3 13. 14. 3 . 15. 16.(1)由已知,有f(x)=cos x·-cos2x+=sin 2x-(1+cos 2x)+=sin 2x-cos 2x =sin,所以f(x)的最小正周期T==π (2)因为f(x)在区间上是减函数,在区间上是增函数,f=-,f=-,f=, 所以函数f(x)在区间上的最大值为,最小值为- 17. (1)所求概率为P=0.6×0.52×(1-0.4)+2×0.6×0.52×0.4+(1-0.6)×0.52×0.4+0.6×0.52×0.4=0.09+0.12+0.04+0.06=0.31 (2)X可能取值为0,1,2,3,4,则P(X=0)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=0.6×0.52×(1-0.4)+2×(1-0.6)×0.52×(1-0.4) +(1-0.6)×0.52×0.4=0.25,P(X=4)=0.6×0.52×0.4=0.06, 由(1)知P(X≥3)= P(X=3)+ P(X=4)=0.31, 则P(X=3)=0.31-0.06=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38, 所以EX=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2 18.(1)不妨设=1,又,∴在△ABC中,, ∴,则=,所以,又,∴, 也为等腰三角形. 【另:由,则,在△NBA中, AN2=1+,∴,也为等腰三角形】 (法一)取AB中点Q,连接MQ、NQ,∴,,∵面, ∴,∴, 所以AB⊥平面MNQ,又MN平面MNQ,∴AB⊥MN (法二),则,以A为坐标原点,的方向为x轴正方向,建立如图所示 的空间直角坐标系可得,,,, ∴,则,所以. (2)同(1)法二建立空间直角坐标系,可知,,平面的法向量 可取为, 设平面的法向量为, ,,则,即,即,令, 得,∴, 故平面与平面的夹角的余弦值. 【另:过B作BD//AC,交AN延长线于D,连PD,分别取PD、AD中点E、F, 连ME,EF,MF, 由面PAD,BD//AC//ME,PAAN,EF//PA,则ME面PAD,EFAN, 且MFAN,∴是所求两面角的平面角. ,, ∴】 19. 都有:,令得: 从而 ,又因为数列是公差为1,所以, 得:,当时,, 检验:时,不满足题设;故通项公式是: (Ⅱ)当时,,当时,,所以 ,符合,故. 20.(1),故 (2)设,依题意,可设直线. 将其与椭圆方程联立,消去得:
由三点共线可知,,, 同理可得,, 而, 所以,故直线、的斜率为定值. 21. (Ⅰ) ,①,即② 由①②联立解得: . 是二次函数, 且,即的两根为-2和0 可设,由,解得. , ,. (Ⅱ)设,,依题意知, 当时,,,, 在上单调递减,,在上单调递增, , 的最小值一定在区间端点取得(开口向下),解得,实数的取值范围为. (Ⅲ)依题意,当时,由, 当 | ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||