设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| 简介:
浙江省温州市十校联合体2015届高三下学期期初联考 文科数学试题 一、选择题:本大题有8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1. 已知全集为,集合,,则 为 ( ) A. B. C. D. 2. 已知函数,其中为常数.那么“”是“为奇函数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 3.下列函数中,在区间上为增函数的是 ( ) A. B. C. D. 4.设是两条不同的直线,是两个不同的平面,则下列命题中正确的是 (A)若且,则 (B)若且,则 (C)若且,则 (D)若且,则 5.已知等差数列{an}单调递增且满足a1+a10=6,则a7的取值范围是 A、(3,6) B、(-∞,3) C、(3,+∞) D、(4,+∞) 6.若角α的终边上有一点P(-1,m),且=,则m的值为 A、 B、 C、或 D、 7.设向量,,其中,若, 则等于( ) A. B. C. D. 8. 设为椭圆与双曲线的公共的左右焦点,它们在第一象限内交于 点,△是以线段为底边的等腰三角形,且.若椭圆的离心率, 则双曲线的离心率取值范围是( ) A. B. C. D. 二、填空题(本大题共7小题,9-12小题每小题6分,13-15小题每小题4分,共36分) 9.已知,那么=_________,= ____________ 10.若、满足约束条件,则目标函数的最大值为 ,最小值为 。 11.已知直线:,若直线与直线垂直,则的值为___________; 若直线被圆:截得的弦长为4,则的值为 12.把边长为的正方形沿对角线折起,形成的三棱锥的正视图与俯视图如图所示,则其侧视图的面积为_________,二面角的余弦值为____________. 13.在直角三角形中,,,,若,则 . 14.设AB是椭圆(a>b>0)中不平行于对称轴且过原点的一条弦,是椭圆上一点,直线与的斜率之积,则该椭圆的离心率为 15.已知数列的首项,且对每个是方程的两根, 则 . 三、解答题:(本大题有5小题,共 74分.解答应写出文字说明、证明过程或演算步骤.) 16.(本题满分15分)已知,递增的等差数列满足(1)求数列的通项公式; (2)设,试求满足的最大自然数。 17.(本题满分15分) 在中,内角的对边分别为,且,.(I)求角的大小;(II)设边上的中点为,,求的面积. 18.(本题满分15分)已知正四棱锥P-ABCD中,底面是边长为2?的正方形,高为.M为线段PC的中点. (Ⅰ) 求证:PA∥平面MDB; (Ⅱ) N为AP的中点,求CN与平面MBD所成角的正切值.
19. (本题满分15分)过直角坐标平面中的抛物线的焦点作一条倾斜角为的直线与抛物线相交于A,B两点。 (1)若=2,求A,B两点间的距离; (2)当时,判断是否为定值。若是,求出其余弦值;若不是,说明理由。 20.(本题满分14分)已知函数,其中为实数。 (1)若(2)若在上单调,求的取值范围。
2014学年第二学期十校联合体高三期初联考答案 文科数学试卷 三、解答题(本大题有5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16解:(1)由已知得---------------2分 即 化简得,------------------4分 递增,----------------6分 (2) ----------8分 -------------12分 即 估算得最大值为7---------------15分 17. 解:(1)由,得, ……………………1分 又,代入得, 由,得, ……………………3分 , ………5分 得, ……………………7分 (2), ……………………9分 ,,则 ……………………12分 ………………15分 18. (Ⅰ)证明:在四棱锥P-ABCD中,连结AC交BD于点O,连结OM,PO.由条件可得PO=,AC=2,PA=PC=2,CO=AO=. 因为在△PAC中,M为PC的中点,O为AC的中点, 所以OM为△PAC的中位线,得OM∥AP,…………3分 又因为AP平面MDB,OM平面MDB, 所以PA∥平面MDB. …………6分 (Ⅱ) 解:设NC∩MO=E,由题意得BP=BC=2,且∠CPN=90°. 因为M为PC的中点,所以PC⊥BM, 同理PC⊥DM,故PC⊥平面BMD.…………9分 所以直线CN在平面BMD内的射影为直线OM, ∠MEC为直线CN与平面BMD所成的角,…………11分 又因为OM∥PA,所以∠PNC=∠MEC. 在Rt△CPN中,CP=2,NP=1,所以tan∠PNC=, 故直线 CN与平面BMD所成角的正切值为2. …………15分 19. 解:(1)焦点,过抛物线的焦点且倾斜角为的直线方程是 由 ( 或 )………….5分 (2)……..8 …………13分 或
∴的大小是与无关的定值。……..15分 20.解:令则-------------1分 (1),又 -------3分 当时,---------5分 当时,---------7分 综上时,为[5,45]-----------8分 欢迎访问“高中试卷网”——http://sj.fjjy.org | ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||