http://www.nyq.cn
 当前位置:首页-> 资源下载 -> 试题 -> 高三数学试卷 -> 下载
试卷资源详情
资源名称 河北省唐山市滦南一中2014届高三12月月考数学文试题
文件大小 147KB
所属分类 高三数学试卷
授权方式 共享资源
级别评定
资源类型 试卷
更新时间 2014-1-13 13:57:41
相关链接
资源登录 ljez
资源审核 nyq
文件类型 WinZIP 档案文件(*.zip)
运行环境 Windows9X/ME/NT/2000/XP
下载统计
::立即下载::
进入下载页面
下载出错
简介:



一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1.设集合A={y|y=x2},B={y|x2+y2=2},则A∩B= (A){(1,1),(-1,1)} (B){-2,1} (C)[0,] (D)[0,2]

2.设复数z=,则z的共轭复数= (A)+i (B)+i (C)--i (D)-i

3.某几何体的三视图如图所示,则其表面积为 (A)8 (B)2 (C)6+4 (D)4+4

4.下列函数中,既是奇函数,又是增函数的是 (A)f(x)=x|x| (B)f(x)=-x3 (C)f(x)=sinx(x∈[0,]) (D)f(x)=

5.运行如图所示的程序框图,则输出的i的值为 (A)3 (B)4 (C)5 (D)6

6.函数f(x)=lnx-的零点所在的大致区间是 (A)(1,2) (B)(e,+∞) (C)(2,3) (D)(,1)和(3,4)

7.已知函数f(x)的对应值表如下,数列{an}满足a1=4,an+1=f(an),n=1,2,3,…,则a2012=

x

1

2

3

4

5



f(x)

5

4

3

1

2



(A)2 (B)3 (C)4 (D)5

8.已知非零向量a,b,c满足a+b+c=0,且a与c的夹角为60(,|b|=|a|,则a与b的夹角为 (A)30( (B)150( (C)60( (D)120(

9.设点P是双曲线-=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,F1、F2分别是双曲线的左、右焦点,且|PF1|=2|PF2|,则此双曲线的离心率为 (A) (B) (C)+1 (D)

10.a,b,c分别是△ABC的内角A,B,C的对边,下面能得出△ABC为锐角三角形的条件是 (A)sinA+cosA= (B)tanA+tanB+tanC>0 (C)b=3,c=3,B=30( (D)·<0

11.已知a是实数,则函数f(x)=acosax-1的图象不可能是 

12.已知f(x)=则满足不等式f(3-x2)<f(2x)的x的取值范围是 (A)(-3,-) (B)(-3,1) (C)[-3,0) (D)(-3,0)

二、填空题:本大题共4小题,每小题5分,共20分,将答案填在题后的横线上.

13.函数f(x)=sin2x-cos2x在区间[,]上的最大值为________.

14.已知点P(x,y)的坐标满足条件则点P到直线3x-4y-9=0距离的最小值为_________.

15.在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AA1=2,BC=2,∠BAC=90(,且此三棱柱的各个顶点都在同一球面上,则该球的体积为_________.

16.在△ABC中,A=30(,BC=2,D是AB边上的一点,CD=2,△BCD的面积为4,则AC的长为__________.

三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.

17.(本小题满分12分)

已知函数f(x)=sin2x-cos2x-,x∈R.

(Ⅰ)求f(x)的最小值及取得最小值时x的集合;

(Ⅱ)设△ABC的内角A,B,C的对边分别为a,b,c.若c=,f(C)=0,向量m=(1,sinA)与n=(2,sinB)共线,求a,b的值.

18.(本小题满分12分)

某国际会议在北京召开,为了搞好对外宣传工作,会务组选聘了16名男记者和14名女记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语.

(Ⅰ)根据以上数据完成以下2×2列联表:

会俄语

不会俄语

总计



男









女









总计





30



并回答能否在犯错的概率不超过0.10的前提下认为性别与会俄语有关?

参考公式:K2=,其中n=a+b+c+d

参考数据:

P(K2≥k0)

0.40

0.25

0.10

0.010



k0

0.708

1.323

2.706

6.635



(Ⅱ)会俄语的6名女记者中有4人曾在俄罗斯工作过,若从会俄语的6名女记者中随机抽取2人做同声翻译,求抽出的2人都在俄罗斯工作过的概率.

19.(本小题满分12分)

在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,AA1=,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1.

(Ⅰ)求证:BC⊥AB1;

(Ⅱ)若OC=OA,求三棱锥B1-ABC的体积.

 20.(本小题满分12分)

设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P是C上一点,PF2⊥x轴,∠PF1F2的正切值为.

(Ⅰ)求C的离心率e;

(Ⅱ)过点F2的直线l与C交于M、N两点,若△F1MN面积的最大值为3,求C的方程.

21.(本小题满分12分)

设函数f(x)=x2+ax-lnx(a∈R).

(Ⅰ)当a=1时,求f(x)的极值;

(Ⅱ)当a≥2时,讨论f(x)的单调性.

请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分。

22.(本小题满分10分)选修4-1:几何证明选讲

如图,AB是⊙O的直径,以B为圆心的⊙B与⊙O的一个交点为P,过A点作直线交⊙O于点Q,交⊙B于点M,N.

(Ⅰ)求证:QM=QN;

(Ⅱ)设⊙O的半径为2,⊙B的半径为1,当AM=时,求MN的长.

23.(本小题满分10分)选修4-4:坐标系与参数方程

在极坐标系中,曲线C:(sin2(=2cos(,过点A(5,()((为锐角且tan(=)作平行于(=((∈R)的直线l,且l与曲线C分别交于A,B两点.

(Ⅰ)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线C和直线l的普通方程;

(Ⅱ)求|AB|的长.

24.(本小题满分10分)选修4-5:不等式选讲

已知关于x的不等式|2x+1|-|x-1|≤log2a.

(Ⅰ)当a=4时,求不等式的解集;

(Ⅱ)若不等式有解,求实数a的取值范围. 参 考 答 案

一、选择题:CDCAB CABAB BD

二、填空题:13.1 14.2 15. 16.2或4

三、解答题:

17.解:(Ⅰ)fmin(x)=-2,f(x)取得最小值时x的取值集合{x|x=k(-,k∈Z}

(Ⅱ)a=1,b=2.

18.解:(Ⅰ)由已知,得2×2列联表:

会俄语

不会俄语

总计



男

10

6

16



女

6

8

14



总计

16

14

30



假设是否会俄语与性别无关.由已知数据,可得

K2=≈1.1575<2.706,

所以在犯错的概率不超过0.10的前提下不能判断会俄语与性别有关.

(Ⅱ)会俄语的6名女记者分别为A,B,C,D,E,F,其中A,B,C,D曾在俄罗斯工作过.从这6人任取2人有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF共15种,其中2人都在俄罗斯工作过的是AB,AC,AD,BC,BD,CD共6种,所以抽出的女记者中,2人都在俄罗斯工作过的概率是P==.

19.(Ⅰ)证明:略 (Ⅱ)V=.

 令t=m2+1,则t≥1,所以h(t)===, 易证h(t)在[1,+∞)上递减,所以hmax(t)=h(1)=, 进而S的最大值为12c2×=3,c2=1,故椭圆C的方程为+=1.

21.解:(Ⅰ)函数f(x)的定义域为(0,+∞). 当a=1时,f(x)=x-lnx,f((x)=1-=. 当0<x<1时,f((x)<0,当x>1时,f((x)>0, 所以f(x)在(0,1)上单调递减,在(1,+∞)单调递减, 所以f(x)的极小值为f(1)=1,无极大值. (Ⅱ)f((x)=(1-a)x+a-== =.因为a≥2,所以0<≤1. 当=1,即a=2时,f((x)=-≤0在(0,+∞)上恒成立; 当0<<1,即a>2时,由f((x)<0,解得0<x<或x>1; 由f((x)>0,解得<x<1. 综上,当a=2时,f(x)在(0,+∞)上单调递减;当a>2时,f(x)在(0,)和(1,+∞)上单调递减,在(,1)上单调递增.

22.解:(Ⅰ)连结BM,BN,BQ,BP.因为B为小圆的圆心,所以BM=BN. 又因为AB为大圆的直径,所以BQ⊥MN,所以QM=QN. (Ⅱ)因为AB为大圆的直径,所以∠APB=90(,AP为圆B的切线, AP2=AM·AN.由已知,AB=4,PB=1,AP2=AB2-PB2=15, 又AM=,所以15=×(+MN),所以MN=.

23.解:(Ⅰ)由题意得,点A的直角坐标为(4,3),曲线L的普通方程为y2=2x,直线l的普通方程为y=x-1. (Ⅱ)设B(x1,y1),C(x2,y2),联立得x2-4x+1=0,由韦达定理得x1+x2=4,x1x2=1,由弦长公式得|BC|=|x1-x2|=2.

24.解:(Ⅰ)若a=4,原不等式化为|2x+1|-|x-1|≤2. 当x<-时,由已知,得-x-2≤2,解得-4≤x<-; 当-≤x≤1时,由已知,得3x≤2,解得-≤x≤; 当x>1时,由已知,得x≤0,此时x不存在. ∴原不等式的解集为{x|-4≤x≤}. (Ⅱ)设f(x)=|2x+1|-|x-1|=

故f(x)∈[-,+∞),即f(x)的最小值为-.

所以f(x)<log2a有解,则log2a≥-,解得a≥,

即a的取值范围是[,+∞).

相关资源:
·河北省唐山一中2014届高三12月月考数学理试题
·河北省唐山一中2014届高三12月月考数学文试题
·河北省冀州中学2014届高三上学期期中考试数学理试题B
·河北省冀州中学2014届高三上学期期中考试数学理试题A
·河北省冀州中学2014届高三上学期期中考试数学文试题B
·河北省冀州中学2014届高三上学期期中考试数学文试题A
·河北省保定市高阳中学2014届高三上学期第十四次周练数学试题
·江苏省阜宁中学2014届高三第三次调研测试数学理试题
·江苏省阜宁中学2014届高三第三次调研测试数学文试题
·广东省珠海一中等六校2014届高三第三次联考数学文试题  
☉为确保正常使用请使用 WinRAR v3.20 以上版本解压本站软件。
☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!!
☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢!
关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号