设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| 简介:
河南省郸城一高2013—2014学年度高三月考(12月) 数学试题(文) 命题:郸城一高 杨培军 一、选择题(每题5分,共12小题,满分60分) 1.已知集合A={x|-1≤x≤2,x∈Z},集合B={0,2,4},则A∪B等于 ( ) A.{-1,0,1,2,4} B.{-1,0,2,4} C.{0,2,4} D.{0,1,2,4} 2.已知设i是虚数单位,若=a+bi(a,b∈R),则的值是 ( ) A.8 B.10 C.3 D.2 3.条件p:x>1,y>1,条件q:x+y>2,xy>1,则条件p是条件q的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 4.为了得到函数y=sin2x的图象,只需把函数y=cos2x的图象 ( ) A.向左平移 B.向右平移 C.向左平移 D.向右平移 5.已知公差不为零的等差数列{}的前n项和为,若是a3与a7的等比中项,且S10=60,则S20等于 ( ) A.80 B.160 C.320 D.640 6.已知x>0,y>0,且9x+y=xy,不等式ax+y≥25对任意正实数x,y恒成立,则正实数a的最小值为 ( ) A.3 B.4 C.5 D.6 7.已知向量a=(cosα,sinα),b=(sinβ,-cosβ),则|a+b|的最大值为 ( ) A. B.2 C.2 D.4 8.已知a是函数f(x)=+的零点,若0<<a,则f()的值满足 ( ) A.f()>0 B.f()=0 C.f()<0 D.f()符号不确定 9.给出如下四个命题: ①若“p∧q”为假命题,则p,q均为假命题; ②命题“若a>b,则>-1”的否命题为“若a≤b,则≤-1”; ③“∈R,+1≥1”的否定是“∈R,+1≤1” ④给出四个函数y=,y=x,y=,y=,则在R上是增函数的有3个. 其中不正确的命题个数是 ( ) A.4 B.3 C.2 D.1 10.已知数列{}的通项公式为=2n(n∈N﹡),把数列 {}的各项排列成如图所示的三角形数阵:记M(s,t) 表示该数阵中第s行的第t个数,则数阵中的偶数2010 对应于( ) A.M(45,15) B.M(45,25) C.M(46,16) D.M(46,25) 11.已知双曲线(a>0,b>0),过其右焦点且垂直于实轴的直线与双曲线交于M,N 两点,O为坐标原点.若OM⊥ON,则双曲线的离心率为 ( ) A. B. C. D. 12.对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:①f(x)在[m,n]内是单调的;②当定义域是 [m,n]时,f(x)的值域也是[m,n],则称[m,n]是该函数的“梦想区间”.若函数f(x)=a-(a>0)存在“梦想区间”,则a的取值范围是 ( ) A.(,2) B.(,+∞) C.(,) D.(2,+∞) 二、填空题(每小题5分,共4小题,满分20分) 13.在△ABC中,a,b,c分别是角A,B,C的对边,且a,b,c成等差数列,sinA,sinB,sinC成等比数列,则三角形的形状是_______________. 14.在平面直角坐标系xOy中,设D是由不等式组表示的区域,E是到原点的距离不大于1的点构成的区域,向E中随机投一点,则所投点落在D中的概率是_______. 15.函数f(x)对任意正整数a,b满足条件f(a+b)=f(a)·f(b)且f(1)=2,则 +++…+=______________ 16.给出下列命题: ①若a>b,则<成立的充要条件是ab>0; ②若不等式+ax-4<0对任意x∈(-1,1)恒成立,则a的取值范围为(-3,3); ③数列{}满足:a1=2068,且++=0(n∈N﹡),则=2013; ④设0<x<1,则+的最小值为 其中所有真命题的序号是______________. 三、解答题(共6小题,满分70分) 17.(本题满分10分))已知α为锐角,sinα=,tan(α-β)=,求cos2α和tanβ 的值. 18.(本题满分12分)已知各项均为正数的等比数列{}的首项为a1=2,且4a1是2a2,a3的等差中项. (1)求数列{}的通项公式; (2)若=,=b1+b2+…+,求. 19.(本题满分12分)在锐角三角形中,三个内角A,B,C的对边分别为a,b,c,满足条件+sin2BsinB+cos2B=1. (1)求角B的值; (2)若b=3,求a+c的最大值. 20.(本题满分12分)已知函数f(x)=,m∈R. (1)当m=1时,求曲线y=f(x)在点(2,f (2))处的切线方程; (2)若f(x)在区间(-2,3)上是减函数,求m的取值范围. 21.(本题满分12分)已知点A(0,-2),B(0,4),动点P(x,y)满足·= -8. (1)求动点P的轨迹方程; (2)设(1)中所求轨迹与直线y=x+b交于C,D两点,且OC⊥OD(O为原点),求b的值. 22.(本题满分12分)已知a∈R,函数f(x)=ax-lnx,g(x)=,x∈(0,e],其中e是自然对数的底数,为常数. (1)当a=1时,求f(x)的单调区间与极值; (2)在(1)的条件下,求证:f(x)>g(x)+; (3)是否存在实数a,使得f(x)的最小值为3?若存在,求出a的值;若不存在,说明理由.
| ||||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||