设为首页
加入收藏
| ┊ 试卷资源详情 ┊ | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
| 简介:
海淀区高三年级第二学期期末练习数学(文) 2015.5 本试卷共4页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上 作答无效。考试结束后,将本试卷和答题卡一并交回。 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。 (1)在复平面内,复数对应的点位于( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 (2)已知命题,则为( ) (A) (B) (C) (D) (3)圆的圆心坐标及半径分别是( ) (A) (B) (C) (D) (4)右图表示的是求首项为,公差为2的等差数列前项和的最小值的程序框图.则①处可填写( ) (A) (B) (C) (D) (5)已知点,,为坐标原点.若点在直线上,且与垂直,则点的坐标是( ) (A) (B) (C) (D) (6)在中,若,则( ) (A) (B) (C) (D) (7)设,则( ) (A) (B) (C) (D) (8)已知不等式组表示的平面区域为,点.若点是上的动点,则的最小值是( ) (A) (B) (C) (D) 二、填空题共6小题,每小题5分,共30分。 (9)以坐标原点为顶点,为焦点的抛物线的方程为 . (10)已知数列的前项和为,,,则 . (11)已知,,则的最小值是 . (12)满足的的一组值是 .(写出一组值即可) (13)函数的极值点 ,曲线在点处的切线方程是 . (14)某网络机构公布某单位关于上网者使用网络浏览器的信息: ①316人使用; ②478人使用; ③104人同时使用和; ④567人只使用中的一种网络浏览器. 则这条信息为 (填“真”或“假”),理由是 . 三、解答题共6小题,共80分。解答应写出文字说明、演算步骤或证明过程。 (15)(本小题满分13分) 已知函数. (Ⅰ)求; (Ⅱ)求函数的最小值. (16)(本小题满分13分) 某中学为了解初三年级学生“掷实心球”项目的整体情况,随机抽取男、女生各20名进行测试,记录的数据如下: 已知该项目评分标准为: (Ⅰ)求上述20名女生得分的中位数和众数; (Ⅱ)从上述20名男生中,有6人的投掷距离低于7.0米,现从这6名男生中随机抽取2名男生,求抽取的2名男生得分都是4分的概率; (Ⅲ)根据以上样本数据和你所学的统计知识,试估计该年级学生实心球项目的整体情况.(写出两个结论即可) (17)(本小题满分13分) 如图所示,在四棱锥中,平面,又,, 且. (Ⅰ)画出四棱准的正视图; (Ⅱ)求证:平面平面; (Ⅲ)求证:棱上存在一点,使得平面,并求的值. (18)(本小题满分14分) 已知数列是首项为2,公比为2的等比数列,又数列满足,是数列的前项和. (Ⅰ)求; (Ⅱ)若对任意的,都有成立,求正整数k的值. (19)(本小题满分13分) 已知函数,其中. (Ⅰ)求的单调区间; (Ⅱ)若对任意的,总存在,使得,求实数值. (20)(本小题满分14分) 已知椭圆,点为椭圆的左顶点. 对于正常数,如果存在过点的直线与椭圆交于两点,使得,则称点为椭圆的“分点”. (Ⅰ)判断点是否为椭圆的“分点”,并说明理由; (Ⅱ)证明:点不是椭圆的“分点”; (Ⅲ)如果点为椭圆的“分点”,写出的取值范围. (直接写出结果) 海淀区高三年级第二学期期末练习 数学(文)答案及评分参考 2015.5 一、选择题(共8小题,每小题5分,共40分) (1)B (2)D (3)A (4)C (5)D (6)C (7)B (8)C 二、填空题(共6小题,每小题5分,共30分。有两空的小题,第一空2分,第二空3分) (9) (10)1 (11) (12) (13), (14)假,由①②③可知只使用一种网络浏览器的人数是212+374=586,这与④矛盾 三、解答题(共6小题,共80分) (15)(共13分) 解:(Ⅰ). ………………4分 (Ⅱ)因为 ………………6分 . ………………8分 因为 , 所以 当,即时,取得最小值. ………………13分 (16)(共13分) 解.(Ⅰ) 20名女生掷实心球得分如下:5,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,9,10,10.所以中位数为8,众数为9. ………………4分 (Ⅱ) 由题意可知,掷距离低于7.0米的男生的得分如下:4,4,4,6,6,6.这6名男生分别记为.从这6名男生中随机抽取2名男生,所有可能的结果有15种,它们是:,. ………………6分 用表示“抽取的2名男生得分均为4分”这一事件,则中的结果有3个,它们是:. ………………8分 所以,所求得概率. ………………9分 (Ⅲ)略. ………………13分 评分建议:从平均数、方差、极差、中位数、众数等角度对整个年级学生掷实心球项目的情况进行合理的说明即可;也可以对整个年级男、女生该项目情况进行对比;或根据目前情况对学生今后在该项目的训练提出合理建议.
(17)(共14分) (Ⅰ)解:四棱准的正视图如图所示. ………………3分 (Ⅱ)证明:因为 平面,平面, 所以 . ………………5分 因为 ,,平面,平面, 所以平面. ………………7分 因为 平面, 所以 平面平面. ………………8分 (Ⅲ)分别延长交于点,连接,在棱上取一点,使得.下证平面. ………………10分 因为 ,, 所以 ,即. 所以 . 所以 . ………………12分 因为平面,平面, 所以 平面. ………………14分 (18)(共13分) 解:(Ⅰ)因为数列是首项为,公比为的等比数列, 所以 . ………………2分 所以 . ………………3分 所以 . ………………6分 (Ⅱ)令. 则. ………………9分 所以 当时,; 当时, ; 当时,,即. 所以 数列中最大项为和. 所以 存在或,使得对任意的正整数,都有. ………………13分 (19)(共13分) 解:(Ⅰ) ………………2分 当时,对,,所以 的单调递减区间为; ………………4分 当时,令,得. 因为 时,;时,. 所以 的单调递增区间为,单调递减区间为. ………………6分 (Ⅱ)用分别表示函数在上的最大值,最小值. 当且时,由(Ⅰ)知:在上,是减函数. 所以 . 因为 对任意的,, , 所以对任意的,不存在,使得. ………………8分 当时,由(Ⅰ)知:在上,是增函数,在上,是减函数. 所以 . 因为 对,, , 所以 对,不存在,使得. ………………10分 当时,令. 由(Ⅰ)知:在上,是增函数,进而知是减函数. 所以 ,, | ||||||||||||||||||||||||||||||
| ::立即下载:: | ||||||||||||||||||||||||||||||
|
下载出错 | |||||||||||||||||||||||||||||
| ☉为确保正常使用请使用 WinRAR v3.20
以上版本解压本站软件。 ☉如果这个资源总是不能下载的请点击报告错误,谢谢合作!! ☉欢迎大家给我们提供教学相关资源;如有其它问题,欢迎发信联系管理员,谢谢! | ||||||||||||||||||||||||||||||