设为首页
加入收藏
扩展资料
古希腊三大几何问题
传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将它神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行.人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图也感到无能为力.这就是古希腊三大几何问题之一的倍立方问题.用数学语言表达这就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的2倍.另外两个著名问题是三等分任意角和化圆为方的问题.
古希腊三大几何问题既引人入胜,又十分困难.问题的妙处在于它们从形式上看非常简单,而实际上却有看深刻的内涵.它们都要求作图只能使用圆规和无刻度的直尺,而且只能有限次地使用直尺和圆规.但直尺和固规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点.某个图形是可作的就是指从有限个点出发,可以通过有限个上述基本图形复合得到.这一过程中隐合了近代代数学的思想.经过两千多年的艰苦探索,数学家们终于弄清楚了这三个古典难题是“不可能用尺规完成的作图题”.认识到有些事情确实是不可能的,这是数学思想的一大飞跃.
然而,一旦改变了作图的条件,问题则会变成另外一个样子.比如直尺上如果有了刻度,则倍立方体和三等分任意角就都是可作的了.数学家们在这些问题上又演绎出很多故事.直到最近,中国数学家和一位有志气的中学生,先后解决了美国著名几何学家佩多提出的关于“生锈圆规”(即半径固定的圆规)的两个作图问题,为尺规作图增添了精彩的一笔.(选于《素质教育新学案》一书)