设为首页
加入收藏
扩展资料
马尔克广场上的游戏
在世界著名的水都威尼司斯,有个马尔克广场.广场的一端有一座宽82米的雄伟教堂.教堂的前面是一方开阔地.这片开阔地经常吸引着四方游人到这里做一种奇特的游戏:把眼睛蒙上,然后从广场的一端向另一端教堂走去,看谁能到达教堂的正前面!
奇怪的是,尽管这段距离只有175米,但却没有一名游客能幸运地做到这一点!全都如下图那般,走成了弧线,或左或右,偏斜到了一边!
类似的情形也有很多,这与俗话说的鬼打墙类似.有许多人在沙漠或雪地里,由于迷失方向而在原地打圈子,这一切近乎玩笑般的遭遇,终于引起了科学家的注意.
公元1896年,挪威生理学家古德贝对闭眼打转的问题进行深入的探讨.他搜集了大量的事例后分析说:这一切都是由于人自身两条腿在作怪!长年累月养成的习惯,使每个人一只脚伸出的步子长一段微不足道的距离.而正是这一段很小的步差x,导致了这个人走出一个半径为y的大圈子!
现在我们将这个过程数学化,研究一下x与y之间的函数关系.
假定某个两脚踏线间相隔为d.很显然,当人在打圈子时,两只脚实际上走出了两个半径相差为d的同心圆.设该人平均步长为1.那么,一方面这个人外脚比内脚多走路程
另一方面,这段路程又等于这个人走一圈的步数与步差的乘积,
即:
对一般的人,
米,
米,代入得(单位米)
这就是所求的迷路人打圈子的半径公式.是我们学过的反比例函数(图象如下图).今设迷路人两脚步差为
毫米,仅此微小的差异,就足以使他在大约三公里的范围内绕圈子!
让我们回到那个马克尔广场的游戏上来.我们先计算一下,当人们闭起眼睛,从广场一端中央的M点,要想抵达教堂CD,最小的弧线半径应该是多少?
如图,注意到矩形ABCD边BC=175(米),
(米).上述问题可以转化成几何中的命题:已知
与
.求
的半径
的大小.
这就说,游人要想成功,他所走弧线半径必须不小于394米.我们再来计算一下,要达到上述要求,游人的两脚步差需要什么限制.
这表明游人的两只脚步差必须小于
毫米,否则就难以成功.然而在闭眼的情况下两脚这么小的步差一般人是达不到的,这就是在游戏中为什么没有人能够蒙上眼睛走到教堂前面的道理.