设为首页
加入收藏
典型例题
例1 下列不等式成立的是( )
(A)
(B)
(C)
(D)
解:
。
∴
。
故应选D
说明:本题根据特殊角的三角函数值比较大小,进而选出正确答案。
例2 在Rt
中,
,如果
,则
等于( )
(A)
(B)
(C)
(D)
解:如图,在Rt
中,设
,则
。
说明:本题根据锐角三角函数的定义,利用“直接法”求解。
例3 求下列各式中的锐角x。
(1)
;
(2)
。
分析:综合考查换元思想,方程解法,特殊角的三角函数值;(1)由原方程得
,把
看作一个量,从而列出
;(2)令
,则原方程化为关于t的一元二次方程,把t求出来,然后再求x的值。
解:(1)∵
∴
,
∴
。
。
(2)令
,原方程可化为:
。
得:
,
。
说明:换元思想可以化繁为简,化难为易,化未知为已知,是中学数学常用的数学方法,望读者仔细体会。
例4 在Rt
中,
,垂足为
,求AB的长和
的值。
解:如图,
∽
,
或
(舍去)。
由勾股定理,得
。
。
说明:利用三角形相似找出本题的解题思想,因此,对学过知识要灵活运用。
例5 已知
为锐角,且
,
求:
的值。
解:原式
。
,
∴原式
。
说明:本题的解法比较巧妙,也可以由
得
,即
,代入要求的式子,得
求解,方法较多,要找出一种较好的解法。
例6 在
中,求证:
。
证明:在
中,
说明:等式
成立是有条件的,即“在
中”,如果把这个条件去掉,则等式不一定成立了。类似地还可以证明
。
例7 在
中,
,求:(1)
的值;(2)
的值。
分析:为了求
、
的值,就要分别构造出以
、
为内角的直角三角形。
解:(1)如图,过点A作
于E,则
,即
,
,
则
。
∴
。
在Rt
中,
。
(2)由(1)知,
,
则
。
过点C作
于D,
由
,
得
,
。
在Rt
中,
。
说明:锐角三角函数是在直角三角形内定义的,因此构造直角三角形就成为利用锐角三角函数解题的基本手段。