http://www.nyq.cn
 当前位置:首页-> 备课参考 -> 初三数学 -> 初三上学期(几何) -> 第六章 解直角三形

第四节 应用举例

作者:未知来源:中央电教馆时间:2006/4/8 18:03:14阅读:nyq
字号:|


教学设计示例

应用举例

  一、教学目标

  1.使学生了解仰角、俯角的概念,能根据直角三角形的知识解决实际问题,会把实际问题转化为数学问题来解决;

  2.通过本节的教学,进一步把形和数结合起来,提高学生分析问题、解决实际问题的能力;

  3.通过本节的教学,向学生渗透数学来源于实践又反过来作用于实践的观点,培养他们用数学的意识.

  二、重点·难点·疑点及解决办法

  1. 重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

  2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

  3.疑点:练习中水位为+2.63这一条件学生可能不理解,教师最好用实际教具加以说明.

  4.解决办法:引导学生体会实际问题中的概念,建立数学模型,从而重难点,以教具演示解决疑点.

  三、教学过程

   1.仰角、俯角

   当我们进行测量时,在视线与水平线所成的角中,视线在

  水平线上方的角叫做仰角,在水平线下方的角叫做俯角.

   教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义.

   2.例1

  如图,某飞机于空中A处探测到目标C,此时飞行高度米,从飞机上看地平面控制点B的俯角,求飞机A到控制点B距离(精确到1米).

   解决此问题的关键是在于把它转化为数学问题,利用解直角三角报知识来解决,在此之

  前,学生曾经接触到通过把实际问题转化为数学问题后,用数学方法来解决问题的方法,但

  不太熟练.因此,解决此题的关键是转化实际问题为数学问题,转化过程中着重语学生画几

  何图形,并说出题目中每句话对应图中哪个角或边(包括已知什么和求什么),会利用平行线的内错角相等的性质由已知的俯角得出中的,进而利用解直角三角形的知识就可以解此题了.

  解:在,

  ∴ (米).

   答:飞机A到控制点B的距离约为4221米.

   [例1]小结:本章引言中的例子和例1正好属于应用同一关系式

  来解决的两个实际问题即已知和斜边,求的对边;以及已知和对边,求斜边.

   3.巩固练习 P.25.

  如图,某海岛上的观察所A发现海上某船只B并测得其俯角.已知观察所A的标高(当水位为0m时的高度)为43.74m,当时水位为+2.63m,求观察所A到船只B的水平距离BC(精确到1m)

   为了巩固例1,加深学生对仰角、俯角的了解,配备了练习.

   由于学生只接触了一道实际应用题,对其还不熟悉,不会将其转化

  为数学问题,因此教师在学生充分地思考后,应引导学生分析:

   1.谁能将实物图形抽象为几何图形?请一名同学上黑板画出来.

   2.请学生结合图说出已知条件和所求各是什么?

  答:已知,求AB

   这样,学生运用已有的解直角三角形的知识完全可以解答.

  对于程度较高的学生,教师还可以将此题变式,当船继续行驶到D时,测得俯角,当时水位为-1.15m,求观察所A到船只B的水平距离(精确到1m),请学生独立完成.

  【例2】  如图所示,已知A、B两点间的距离是160米,从A点看B点的仰角是11°,AC长为1.5米,求BD的高及水平距离CD.

  此题在例1的基础上,又加深了一步,须由A作一条平等于CD的直线交BDE,构造出,然后进一步求出AE、BE,进而求出BDCD.

  设置此题,既使成绩较好的学生有足够的训练,同时对较差学生又是巩固,达到分层次教学的目的.

  解:过A,于是

  在中,

  ∴ (米).

  .

  ∴ (米).

  ∴ (米).

   (米).

  答:BD的高及水平距离CD分别是32.03米,157.1米.

  练习:为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角,已知人的高度为1.72米,求树高(精确到0.01米).

  要求学生根据题意能画图,把实际问题转化为数学问题,利用解直角三角形的知识来解决它.

返回页首  

关于本站 | 免责声明 | 业务合作 | 广告联系 | 留言建议 | 联系方式 | 网站导航 | 管理登录
闽ICP备05030710号